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PREFACE

The Second Interim Report contained in this document details the
activities performed under the optional program of the NASA HOST
Contract, "Creep Fatigue Life Prediction for Engine Hot Section
Materials (Isotropic)", under Contract NAS3-23288. The time period .
covered is from October 1985 through April 1987. The objective of
this effort was to improve the high temperature crack initiation
prediction technology for gas turbine hot section components. This
program was conducted under the direction of Dr. Gary R. Halford, who
served as the NASA Program Manager. The Program Manager at United
Technologies Corporation was Mr. Richard S. Nelson who also served as
prinicipal investigator, having responsibility for the life prediction
model development and oversight of most of the technical tasks. Mr.
Gregory W. Levan directed the metallographic examinations of the test
material and specimens and provided interpretation of the results.
Mr. John F. Schoendorf was responsible for the technical effort under
Task VI, Multiaxial Stress State Model; Task VIII, Screening of
Potential Environmental and Protective Coating Models; and Task IX,
Environmental Attack Model.
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SECTION 1.0
SUMMARY

A series of high temperature, strain controlled fatigue tests have been
completed to study the effects of complex loadings such as thermomechanical
fatigue, multiaxial loading, and imposed mean stresses along with reactive
environments. Most of these tests used the cast nickel-base superalloy
B1900+Hf (with and without coatings) as a baseline alloy. A small number of
alternative alloy tests were run on wrought INCO 718.

A strong path dependence was demonstrated during the thermomechanical fatigue
testing, using several different strain-temperature cycles, including
in-phase, out-phase, and non-proportional (elliptical and "dogleg") cycles.
Other test variables included temperature range, strain range, strain ratio
and hold time. A series of multiaxial tests also demonstrated cycle path to be
a significant variable, using both proportional and non-proportional
tension~-torsion loading.

Environmental screening tests were conducted in moderate pressure oxygen and
purified argon; the oxygen reduced the specimen lives by a factor of two,
while the argon testing produced ambiguous data. Both NiCoCrAlY overlay and
diffusion aluminide coatings were evaluated on B1900+Hf material under
isothermal and TMF conditions. In general, the lives of the coated specimens
were higher than those of uncoated specimens tested under the same conditions,
giving further evidence that environmental mechanisms are very important in
the temperature range of 538-871°C(1000-1600°F).

Controlled mean stress TMF tests were conducted under load control instead of
strain control so that a fixed mean stress could be maintained during each
test. These tests showed that small mean stress changes could affect initiation
lives by orders of magnitude. Such results are not conservatively predicted
using traditional linear damage summation rules.

Extensive microstructural evaluations were completed for many specimens in
this program using optical, Scanning Electron Microscopy (SEM), and
Transmission Electron Microscopy (TEM) techniques. These techniques were used
to categorize failure modes and to correlate the various types of dislocation
configurations with fatigue capability. Crack initiation lives were determined
using surface replication techniques; tensile load drop lives were recorded
automatically by the test rig software. Life prediction models were then
developed based on this information.



SECTION 2.0
INTRODUCTION

2.1 Contract Objectives

The overall operating cost of the modern gas turbine engine is greatly
influenced by the durability of combustor and turbine structural components
operating at high temperatures. Inadequate durability results in reduced

engine efficiency and increased maintenance costs due to premature repair and
replacement. To increase the durability of these components, more accurate
structural analysis and life prediction methods must be developed for compo-
nents operating at higher temperatures. However, improvements in the state-of-
the art technology for elevated temperature durability prediction have been
hampered by: 1) the severe operating conditions of the engine; 2) the inability
of analytical and life prediction tools to be successfully used in the design
of lower temperature components to predict complex material behavior and inter-
action of damage mechanisms of components at elevated temperatures; and 3) the
high cost of engine development testing which prohibits the accumulation of
adequate failure data and local operating conditions required for the system-
atic development and calibration of durability prediction models.

This contract began as part of the NASA Hot Section Technology (HOST) program
which was aimed at developing improved life prediction technology for
structures operating at elevated temperatures. It investigated fundamental
approaches to high temperature crack initiation life prediction, identified
modeling strategies and developed specific models for component relevant
loading conditions. The program was a 6-year, 2-part effort (2-year base
program plus a 4 year optional program) that considered two isotropic hot
section materials and protective coating systems. Under the base program,
various life prediction approaches for high temperature applications were
investigated, and basic models for simple cycle, isothermal loading conditions
were selected and developed. Models that addressed thermomechanical cycling,
multiaxial loading conditions, cumulative loading, environmental effects and
cyclic mean stress were developed under the optional program. Finally, to
demonstrate the applicability of these models to other materials, additional
tests were performed on an alternative material.

This report details the activities performed under the optional portion of
NASA Contract NAS3-23288, "Creep Fatigue Life Prediction for Engine Hot
Section Materials (Isotropic)", during the period from October 1985 through
April 1987. The specific areas covered include the following technical tasks:

Task V — Thermal-Mechanical Cycling Model

Task VI ~ Multiaxial Stress State Model

Task VIII - Screening of Potential Environmental and Protective Coating
Models

Task IX — Environmental Attack Model

Task X — Protective Coating Models

Task XI — Cyclic Mean Stress Model

Task XII - Final Verification and Evaluation of Alternative

Material/Protection Coating System/Component Combination



2.2 Overview of Previous Contract Activity

This section provides a brief review of the progress made during the first
four years of this contract effort. It describes the early work performed
during this period of the HOST contract and serves as background for the work
covered by this report., The data generated during the base program will not be
repeated in this report but may be found in the Second Annual Report (Moreno
et al, 1984) and in the previous Interim Report (Nelson et al, 1986).

The following materials were recommended and approved for use in both the base

and option portions of the program:
Base Material = Cast B1900 + Hf (PWA 1455)
Alternate Material = Wrought INCO 718 (AMS 5663)
Coatings = Diffusion Aluminide (PWA 273)
MCrAlY Overlay (PWA 286)

Details of the selection and characterization of these materials and of the
preparation and testing of the specimens will be presented in Section 3.0.

A total of 21 tensile tests were completed on PWA 1455, covering the
temperature range from room temperature to 1093°C (2000°F). Figure 1 shows
typical stress-strain response curves for the standard strain rate of 0.005
min—1. Also, a total of 19 specimens were creep tested at temperatures
between 649°C (1200°F) and 982°C (1800°F). Both actual test data and post-test
metallurgical examination of these monotonic specimen tests were used to
understand the deformation mechanisms active at various temperatures for this
material.
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A total of 99 isothermal fatigue tests were conducted on PWA 1455 during the
base program covering the temperature range from 538°C (1000°F) to 982°C
(1800°F), with the bulk of the tests being run at 871°C (1600°F). The addi-
tional variables studied included strain range, ratio, and rate, as well as
hold time effects. For each specimen, a crack initiation life was determined by
means of surface replicas taken during tests conducted at similar conditions.
The definition of initiation was chosen to be the generation of a 0.76 mm
(0.030 in.) surface length crack. This surface length corresponds to a crack
depth of about 1-2 grain diameters and is considered to represent the point at
which the crack may be analyzed using linear elastic fracture mechanics.

Many specimens were examined metallographically using optical, SEM, and TEM
techniques to determine failure sites, crack paths, and dislocation networks.
No statistically significant difference could be seen between failures which
originated at porosity and those which originated at carbides. The initiation
and propagation modes (transgranular or intergranular) were shown to be a
function of both temperature and strain rate. Figure 2 shows that there is a
greater tendency toward intergranular behavior as temperature increases and
strain rate decreases. The appearance of the dislocation networks created by
various loading conditions suggested that the maximum stress achieved during
the initial cycling was very important to the subsequent fatigue capability of
the material.

1802 E
1E-03 |~
1E04
STRAIN [
RATE = TRANSGRANULAR
HSEC™YH L CRACKING
1E05 3 0O
L
1606
1EQ7 " e 1 i m 1 = 1 -}
427 538 649 760 871 982 1093

(800} (1000) (1200) {1400} (1600} (18001 {2000
TEMPERATURE, °C (°F)

Figure 2.- Cracking Map for B1900+Hf.
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The life prediction approach which developed during the base program is called
Cyclic Damage Accumulation (CDA). One of the fundamental assumptions of the
CDA model is that the damage capability is related to the grain dislocation
structure. Determination of the grain capability must therefore include
consideration of the entire loading history of the specimen, especially the
maximum stress excursions. In particular, it was assumed that the grain cyclic
capability can be calculated from the maximum stress attained in the initial
loading cycle and the amount of primary creep strain that could have been
developed if that stress level had been held constant. It was further assumed
that, for temperatures below 649°C (1200°F) where little or no creep occurs,
the grain cyclic capability would be represented by the residual inelastic
strain (percent elongation) measured after a tensile test. The result of these
two assumptions is that grain cyclic capability varies as a function of
temperature and stress as shown in Figure 3.

oo/ LSS S

012}~
2
>
=
= 008}~
'._
&)
)
[a)
.004 |—
INCREASING
STRESS
0 ] 1 _ ] | ]
427 538 649 760 871 982 °C
(800) (1000) {1200) (1400) {1600) (1800) (°F)

TEMPERATURE (°F)

Figure 3.- Assumed Grain Cyclic Fatigue Capability.



Another feature incorporated in the CDA life model was the use of damage
ratios rather than absolute damage levels, By plotting the available data for
cycles having either time-independent or time-dependent damage, it was
possible to arrive at the following mathematical form of the CDA model:

N
' B .
o (_@_) ( or > Ao\, | ( Borzr ( o7 ) ( ‘ )C_l AN =0
7 dN Jpgp |\ °T.REF J\ Bopgr Ao OT, REF IREF
0

Where:

£ = primary creep strain ductility

( iD—) = reference cyclic damage rate

dN J rer

or = maximum lensile stress

Ao = stress range

! = time = 0.5 * {total cycle period + hold times)

N; = initiation life

REF = reference values

B = stress exponent in primary crzep power law

C = {ime exponent in primary creep power law with shifted time ongin

This equation was then calibrated using the baseline fatigue data and used to
generate life predictions for various verification cycles. Sensitivity studies
were also conducted to determine the effects of crack size to grain size
ratio, definition of initiation, choice of reference condition, and data
requirements for life predictions. Preliminary work was also done on possible
means of using this or a similar equation to predict intergranular cracking as
well as transgranular.

During the initial part of the optional program, work began on the expansion
of the basic CDA life prediction method to account for the effects of
thermomechanjcal fatigue, multiaxiality, cumulative damage, environment,
coatings, and mean stresses. The B1900+Hf specimen database was significantly
expanded during this time to provide clear data regarding material behavior
under such complex conditions. Under Task IV, eighteen additional isothermal
fatigue verification tests were completed and are covered by the previous
report. These tests explored the effects of hold times with R=0 or high strain
range, R-ratios at low strain rate and high temperature, load control, and
surface finish. The first four multiaxial tests were completed during the



previous reporting period, and much of the information generated is included
in Section 5 of this report. Similarly, the investigation of environmental
effects began during the last period and is covered in detail in Sections 6
and 7 of this report. Two comprehensive literature reviews, covering state-of-
the-art life prediction methods for both multiaxial stresses and environmental
effects, were also included in the previous report.

Prediction of initiation life under conditions of thermomechanical fatigue
(TMF) is one of the most important practical applications of any advanced
creep-fatigue life model since conditions of simultaneously varying strain and
temperature are typical of what is experienced by many components of modern
turbomachinery and powerplants. To understand the behavior of B1900+Hf under
TMF conditions, thirty uncoated TMF specimen tests were completed during the
period covered by the previous interim report. These simulated many types of
strain-temperature cycle paths, including in-phase, out-of-phase, "dogleg"
(non-isothermal holds), and elliptical cycles. The results shown in Figure 4
are typical of the effects produced by such variables for which successful
1ife models must be able to account. The modifications to the CDA model which
were initiated at this time will enable it to accept completely arbitrary
histories of stress-strain-temperature and thereby make accurate TMF life

predictions.
A FIXED: 538-871°C (1000-1600°F) (TMF}, 1 CPM, Re =-1
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Figure 4.- TMF Results for In-Phase and Out-of-Phase Cycles.

Under Task VII, fifty cumulative damage tests were completed, including
blocktests (strain ratio, temperature, and hold time), sequenced tests (strain
range and rate), and interrupted tests (prior creep and interspersed exposure
time). An interaction curve for the block strain ratio results are shown in



Figure 5, where the level of prior loading and its duration are seen to have
pronounced effects on the life of subsequent block loading. This effect is
easily captured using the CDA concept of primary creep ductility, since this
variable depends on the prior loading history. The cumulative damage tests
also showed the need to incorporate a non-linear damage accumulation function
to predict sequence effects correctly. This required the introduction of two
modifications of the original form of the CDA model: the concept of ductility
fraction, and the non-linear rate modifier function, G(N/Ni).
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Figure 5.- Interaction Diagram for Strain Ratio Block Tests.

The ductility fraction concept permits the primary creep strain ductility to
vary during the course of the test by bringing it under the integral. The
ductility fraction, f€’ is defined as the fraction of the available ductility
which has been consumed:

. . Ductility Fxhausted
Ductility Fraction, f, = vallable Dty (2)

The equation used to calculate this quantity may be written as follows, using
CDA nomenclature:

N;
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It can be seen that when fg reaches 1, N will equal the predicted initiation
life, Ni. Note also that the current initial ductility is now inside the
integral, which permits the algorithm to switch from one loading condition to
another which has a different initial ductility.

(4)

We may also rewrite equation 3 to perform the integration over fg¢ instead of
N, and at the same time introduce a non-linear function G(N/Ni) which has the
property that its integral over the interval from 0 to 1 is always 1, no
matter what values are chosen for its constants:

1

€ 7
N; = L of N dr. (5)
dD N; ¢
- (o7 Ao, ) ¢
dN RETF -

0

The function G(N/Ni) chosen for the initial trials of this method is a
combination of a power law and a linear function:

M
N . _( N + LF
G(—AT[) = (l—LF)(M+I)|:l <N,- )} + LF (6)

The effect of the inclusion of the non-linear function G(N/Ni) on the CDA life
prediction for a strain ratio block test is shown by Figure 6. This plot shows
how the ductility fraction increases as a function of cycles, both for linear
and non-linear damage accumulation. In this case the non-linear prediction is
lower than the linear prediction, because the basic damage rate (slope of the
linear accumulation line) during the first block of the test is lower than the
rate during the second block. This causes the ductility to be consumed earlier
with the non-linear function than without it, and the net result is a lower
prediction. The opposite effect is seen in Figure 7, where reversal of the
order of the blocks causes the non-linear life prediction to be higher than
the linear one. Note that this is the same effect which was observed during
the specimen testing.
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SECTION 3.0
MATERIALS AND TEST METHODS

3.1 Material Selection and Characterization

Based on a comprehensive survey conducted early in this program, the following
materials and coating systems were selected as representative of hot section
materials in general use today:

Cast B1900+Hf (PWA 1455)

Diffusion Aluminide (PWA 273) and NiCoCrAlY
Overlay (PWA 286)

Alternative Material : Wrought INCO 718 (AMS 5663)

Base Material
Coating Systems

The use of cast and wrought alloys allows the development and examination of
life prediction models for two materials having the same matrix (nickel) but
significantly different composition and microstructure (e.g., high vs. low
volume fraction gamma prime). The selection of a diffusion and an overlay
coating also provides a variation in composition and microstructure to
determine their effects on creep-fatigue life,

3.1.1 Base Material

The B1900 + Hf material selected for the program was part of a single heat,
designated W-0098, obtained from Certified Alloy Products, Inc., Long Beach,
California. The chemical composition of this heat is compared to nominal
specifications in Table I a). A total of 2500 pounds of material was obtained
for specimen preparation.

As mentioned in Section 2.2, the monotonic behavior of this heat of material
was fully characterized during the base program using 21 tensile tests and 19
creep tests. Detailed listings of the data for these tests were reported in
the Second Annual Report (Moreno et al, 1984).

For the uniaxial fatigue specimens, the alloy stock was cast into individual
test bars using standard investment casting techniques. The geometry of these
bars is shown in Figure 8. Each bar was given a unique identification number
consisting of the mold sequence number, followed by A, B, C, or D to
differentiate the four bars from each mold. A somewhat larger cast tubular
test bar was developed for the multiaxial specimens in cooperation with
Hitchiner Manufacturing Co., Milford, New Hampshire. For all cast geometries,
the casting parameters (pour temperature, mold temperature, cooling rate,
etc.) were established to produce a uniform small grain size (ASTM 1-2) in
each bar.

11



TABLE I
COMPOSITION AND HEAT TREATMENT OF B1900+Hf

a) Chemical Composition by Weight

Actual %
Element Nominal % Heat W-0098

C 0.11 0.09
Cr 8.0 7.72
Co 10.0 9.91
Mo 6.0 5.97
Al 6.0 6.07
Ta 4,25 4,21
Ti 1.0 0.99
B 0.015 0.016
Zr 0.08 0.04
Fe 0.35% 0.17
\Y 0.1% 0.04
Cb 0.1 0.08
Bi 0.5 ppm 0.1
Pb 10.0 ppm 0.1
Hf 1.15 1.19
Ni Remainder Remainder

b) Heat Treatment Cvcles for B1900+Hf (coated or uncoated

Solution : 1079 +14°C (1975 +25°F) for 4 hours in hydrogen atmosphere;
air cool

Precipitation : 899 +14°C (1650 +25°F) for 10 hours in air; air cool

MM {IN)
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{(5.45) o
X
(0.6201DIA
30.5 l
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L /
39.4 25.4 39.4
(1.55) .o {1.55)
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Figure 8.- Costing Geometry Used for Test Specimens.
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The heat treatment cycles used for all the B1900+Hf specimens are shown in
Table I b). All the bars for specimens to be tested without coatings were
fully heat treated prior to machining. Specimens which were to be tested with
protective coatings were first machined, then coated using standard production
methods, and finally heat treated (which also served as part of the coating
application process). The compositions and deposition processes for the two
coating systems are shown in Table II. The nominal thickness shown for the PWA
286 coating was determined directly by comparing the specimen diameters before
and after coating. The actual as-applied thicknesses varied from 0.12 to

0.15 mm (0.0046-0.0060 in.). The PWA 273 thickness was measured by including a
small disk sample of B1900+Hf during the coating application cycle. This disk
was sectioned and examined metallography. As shown in Figure 9, the average
coating thickness including the diffusion zone was approximately 0.04 mm.
(0.0015 in.).

TABLE II
DESCRIPTION OF PWA 286 AND 273 COATING SYSTEMS

Nominal Thickness

Coating Type Composition Deposition Process (mm,{(in.))
PWA 286 Overlay NiCoCrAlY+Si+Hf Vacuum Plasma Spray 0.13 (0.005)
PWA 273 Aluminide AlSi Pack Cementation 0.04 (0.0015)

Figure 9.— PWA 273 Coated PWA 1455 Coating/Base Metal Interface. Average
coating thickness including diffusion zone is 1.5 mils.

13



3.1.2 Alternative Material

To provide material for this task, a production quality ring rolled forging of
AMS 5662 was obtained (heat code RLV0-9938). This forging weighed more than
190 kilograms (420 pounds), thus providing sufficient material for machining
all test specimens. The forging was sectioned into manageable chunks of
material and was then heat treated to AMS 5663 specifications. The detailed
chemical composition and heat treatment schedule are given in Table III.
Optical examination was made of the fully heat treated microstructure of the
forged INCO 718 material. Typical micrographs are shown in Figure 10. The
needle shaped precipitates along the grain boundaries are delta phase, and the
larger particles in the matrix are believed to be carbides. The grain size is
approximately ASTM 2-5 (as compared to ASTM 1-2 for the B-1900 Hf alloy).

As with the B1900+Hf, the INCO 718 material will be fully characterized

regarding tensile and creep properties. These tests will be completed during
the final reporting period and will be covered in detail in the Final Report.

TABLE TIII
COMPOSITION AND HEAT TREATMENT OF INCO 718

A. Chemical Composition by Weight

Actual %
Element Nominal % (H/C RLV0-9938)
Cr 19.0 18.6
Fe 19.0 19.0
Cb+Ta 5.2 5.2
Ti 0.9 0.98
Al 0.6 0.53
Mo 3.0 3.0
G 0.05 0.054
Ni Remainder Remainder

B. Heat Treatment Cycles for INCO 718

Solution

Precipitation :

: 954 414°C (1750 + 25°F) for 1 hour in protective

atmosphere; air cool

718 +8°C (1325 115°F) for 8 hours; furnace cool at 55°C
(100°F) per hour to 621 +8°C (1150 +15°F); hold until a

total aging time of 18 hours is reached; air cool

14
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3.2 Specimen Preparation

All fatigue specimens were prepared using low stress, centerless grinding
techniques. Following the machining operations, all uncoated specimens were
electropolished using parameters developed to remove about 10 microns

(0.0004 in.) from the surface without any deleterious effects on the
microstructure. Tubular specimens were electropolished on the outer diameter.

Three basic specimen geometries were used, as shown in Figure 11. The solid
specimen shown in Figure 11(a) was used for all uniaxial, isothermal fatigue
testing, including cumulative damage tests and environmental tests. The smaller
tubular specimen shown in Figure 11(b) was designed for TMF testing using an
external extensometer. Its wall thickness was chosen to represent that of a
typical airfoil, thereby permitting rapid temperature changes. The larger
tubular specimen shown in Figure 11(c) was designed for strain controlled
tension-torsion multiaxial testing. The actual gage section was approximately
33 mm. (1.3 in.) long, but this was corrected to an effective gage section of
25.4 mm. (1.000 in.) using factors developed from strain gage tests of an
actual specimen. All tubular specimens were honed on the I.D. to help prevent
failures from that surface.

3.3 Test Equipment and Procedures

All fatigue specimens were tested in computer controlled servohydraulic load
frames similar to the TMF rig shown in Figure 12. The computer controlled the
test and recorded stress and strain data at specified logarithmic intervals.
Most of the tests were strain controlled using external extensometry; for
those few tests run under lcad control, the extensometry was still used to
record strain data. Specimen heating was by low frequency induction, with
closed loop temperature control accomplished with infrared pyrometry. The
B1900+Hf tests were generally held at zero load at the test temperature until
the surface emissivity stabilized prior to beginning the actual test. The INCO
718 tests were much lower in temperature and therefore required a high
emissivity target (spot of black paint) to provide stable temperature readings.

The multiaxial experiments under Task VI were conducted at the University of
Connecticut by Prof. Eric Jordan of the Mechanical Engineering Department and
his students. A& very stiff tension-torsion load frame was employed, using
collet-style specimen grips. Initial specimen tests used an extensometer which
required attachment and alignment of two concentric target rings onto the
specimen. This procedure proved to be time consuming during the surface
replications which are taken periodically during the tests, and the
capacitance probes used for displacement measurements caused some problems as
well. Therefore, other multiaxial extensometer designs which did not require
any special targets on the specimen were evaluated, including those in use at
Oak Ridge and NASA-Lewis. An improved version based on these earlier designs
was fabricated and installed toward the end of the series of B1900+Hf tests.
The new design was much easier to operate and simplified the testing procedure.
Comparison of results from the new extensometer with those from the earlier
extensometer showed good agreement.

16



95.3 -
{3.75)
7.6
™ (0.300)
22.9 i
(0.900}
U
27.9
—~(1.10)

(A) Isothermal Specimen

105.7
- (4.160) -
27.9
(1.100)
1
-.----—‘r-— - - } 22.9
1] (0.900)
Y ] 1B o
]
13.8 !
113 | (0.544)
(0.444)' DIA.
DIA
(B) TMF Specimen
2 PLACES
88.9
(3.500) ———— 3t
76.2
(3.000) ~—>
29.2 =
(1.150)R 2PLACES
2 PLACES
33.0
(1.3000R 2 PLACES
/7\\" —————————————— - —ToTr~""1 208 DA
% _ (_-750’_ (.820) 2PLACES
N T B D . |
88.9 . 25-1 88.9
" (3.500) {.9901 (3.500)
GAGE SECTION
- 203.2
{8.000)
REF.

(C) Biaxial Tension Torsion Specimen

Figure 11.- Test Specimen Geometries [all dimensions in mm (in.)]

17



ORIGINAL PAGE
BLACK AND WHITE PHOTOGRAPH

Figure 12.- TMF Specimen Test Rig.

As shown in Figure 13, a stainless steel, low pressure chamber for the
environmental testing under Task IX was completed and overpressure tested. The
chamber itself is water-cooled and has ports for induction power feed-through,
strain and temperature signals, infrared pyrometer and internal cooling water.
The chamber was fitted with an argon purifier to assure very low oxygen
levels, and initial trials showed that the environment was satisfactory.
Figure 14 shows the water-cooled MIS extensometer in place in front of the
specimen.

The mean stress experiments under Task XI required simultaneous independent
control of both mean stress and strain range. The isothermal tests under this
task were conducted at the University of Rhode Island by Prof. Hamouda Ghonem
of the Mechanical Engineering Department and his students. They had developed
control software which uses history data from earlier cycles of a particular
test to forward extrapolate where to set the maximum and minimum strain limits
for the next cycle., This arrangement worked very well, producing reliable
data under a wide range of isothermal test conditions. However, because the
capability to run a full load controlled TMF test was already available in the
P&W lab, it was decided to run the TMF mean stress tests under load control
using the current software. This provided direct control of the mean stress
while the fixed stress range gave a strain range which was approximately
constant provided as there was little cyclic hardening or softening.

18
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SECTION 4.0
EXPERIMENTAL RESULTS

4.1 Task V - Thermal - Mechanical Cyeling Model

The purpose of this task was to simulate engine operating conditions by
varying both strain and temperature simultaneously. These tests were conducted
to provide an increased understanding of the damage mechanisms of actual
components and to characterize the influence of cycle type, strain range,
R-ratio, and temperature range. The initial effort of this task which
concentrated on uncoated samples was reported by Nelson et al (1986). The type
of basic cycles used for this task are shown in Figure 15.

IN-PHASE &

QUT-OF-PHASE &

ELLIPTICAL-CW¢g

ELLIPTICAL - CCW g

1/ C? VAN

Figure 15.- Comparison of Basic TMF Cycle Types.

Specimen testing under this task was completed in December, 1986, with a total
of 55 B1900+Hf TMF specimen tests. Of these 55 specimens, 32 specimens were
tested in the uncoated condition, and data for all uncoated specimen tests
(except for the two hold time tests) were included in the first interim
report. The TMF tests reported in this interim report focused on the effects
of two major types of protective coatings currently in use in gas turbine
engines. During this reporting period, a total of 25 specimens were evaluated,
12 coated with NiCoCrAlY overlay coating (PWA 286), 11 coated with diffusion
aluminide coating (PWA 273), and 2 without coating. The test variables
included strain range, temperature range, mean strain, cycle type, and hold

20



times. The conditions were chosen to complement both the uncoated TMF tests

and the baseline isothermal fatigue tests. Particular attention was focused on
the low strain, high life regime, since modern turbomachinery is designed for
good durability. Some of the non-standard cycle types used (such as elliptical
and dogleg cycles) have demonstrated that TMF damage cannot always be accounted
for in the same manner as isothermal tests. The model chosen must be sensitive
to accumulation of damage from any arbitrary strain-stress-temperature cycle
and yet be practical for use in design applications.

Strain range and cycle type were both shown to be significant factors in
determining coated TMF life. As with the uncoated TMF tests, the phase angle
between strain and temperature for elliptical cycle tests (clockwise vs.
counterclockwise) was also very important, especially at low strain ranges.

For the conditions used in this task, the presence of the coatings in general
increased the specimen lives by 2-5X. This is in contrast to most actual
service conditions, in which the coating will crack prematurely when exposed
to high local strains. This was confirmed by judicious selection of a cycle
type which resulted in high coating strains and hence lower life than an
uncoated specimen.

Optical and SEM examinations were made on two of the PWA 286 overlay coated
specimens (119A and 119B) to determine if recrystallization occurred at the
worked surfaces of the specimens because of the post-coating heat treatment.
Examinations of the fracture surfaces and polished and etched sections below
the fractures did not reveal evidence of recrystallization. Figure 16 shows
SEM micrographs at the OD of polished and etched sections of 119A and 119B. At
the uncoated OD surface of both specimens, a thin depletion zone (about 10
microns in the thickest regions) was observed. This zone forms as the result
of oxidation of the specimen surface at elevated temperatures.

For comparison, matrices of TMF tests for both uncoated and coated specimens
are shown in Tables IV and V. Details of the test results for all tests
completed during this reporting period are given in Appendix A.

4.1.1 OQut—-of—Phase Testing on Specimens Coated With PWA 286
NiCoCrAlY Overlay Coatings

A total of six overlay coated specimens were tested using out-of-phase strain-
temperature cycling. In the first test, the initiation life of specimen 120A
[538-871°C (100-1600°F), 0.4% strain range, R=-1, 1 cpm] using PWA 286
(NiCoCrAlY) overlay coating was 3700 cycles. During the test, a crack
developed on the outer fillet of one of the ID ridges which caused a premature
failure of the specimen at 4033 cycles. These ridges were machined out of the
remaining specimens to preclude a recurrence of this problem. A second PWA 286
coated specimen (120B) was tested at the same conditions which revealed
jnitiation and separation lives of 2938 and 4452 cycles, respectively.
Comparison of the replica data of specimen 120B with those of specimen 120A
showed that the separation life of Specimen 120A would have been 5584 cycles
if it had not failed prematurely due to the internal ridges. These lives are
approximately 2X higher than the lives of uncoated specimens run at the same
conditions, indicating that the coating inhibited some damage mechanism(s)
(such as oxidation) found in the uncoated TMF tests.
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Temp. Range Strain
(°F) Range

1000-1600 0.004

0.005

1000-1700 0.004
1000-1800 0.005
800-1700 0.005

Temp. Strain
Range(°F} Range R_

1000-1600 0.004 O
-1

0.005 O

=1

1000-1800 0.004 -1
0.005 -1

TABLE IV
UNCOATED PWA 1455 TMF SPECIMEN TEST MATRIX

Cycle Type
R 1 11 CW CCW  I+Hold II+Hold _LT LC HY HC
0 126A
1228 126D
-1 122A 1288 123D 124A
109B  124C
- 107C
46C 42D
° 42C 104A
45A 428 127D 108D 42A 45D 108A  46A
- 1050 102C 1298 125D 1018 105C
- 46D
-1 1038
-1 106C
-1 45C
TABLE V

COATED PWA 1455 TMF SPECIMEN TEST MATRIX

0 = Overlay (PWA 286)

11

CW

A = Aluminide (PWA 273)
CYCLE TYPE
CCw I+Hold II+Hold _LT LC HT

HC

0-120A
0-1208
A-114A

0-112D

0-119A
0-113A
A-115C

A-116C
A-116D

0-1198
A-115A

0-120D A-~1158 0-119C 0-120C A-116A
A-114D 0-1130 A-114C 0-113B

A-115D ©0-113C

A-1168B
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Optical examination of specimen 120B revealed the presence of initiation sites
at the inner and outer diameters., The inner diameter initiation resulted in
the larger crack which may have influenced the life of the specimen. SEM
examinations were made of the outer diameter initiation area only, as this
involves the coated surface. SEM micrographs of this area are shown in Figures
17(a) and 17(b). As shown, the fracture surface is heavily oxidized and the
exact location of the initiation cannot be determined; a secondary crack is
also visible. The coating in the fatigue area has a porous appearance as
compared to the coating fractured at room temperature when the specimen was
pulled apart, as can be seen by comparing Figures 17(b) and 17(c).

Additional out-of-phase TMF tests on PWA 286 overlay coated specimens were run
at different temperatures and at a higher strain range of 0.5%. Specimen 119A
was run at 538-871°C (1000-1600°F), 0.5% strain range, R = -1, and out-of-phase
strain-temperature cycling at 1 cpm. This specimen separated at 2570 cycles,
and subsequent SEM observations revealed multiple initiation sites on the ID.
Porosity was also observed at the primary initiation site, as shown in Figure
18. However, replica data taken from the specimen 0D showed a 0.010 in. crack
at 1601 cycles. By using the growth rate observed during similar testing on
uncoated samples (45A, 105D), the initiation life for the coated OD surface
was estimated to be at 2073 cycles and the separation life at 3240 cycles if
the ID failure did not end the test prematurely. These lives are significantly
higher than the lives of the uncoated specimens run at these conditions, with
the initiation life being approximately double that of the uncoated specimens.
This is in agreement with the life increase noted at the lower strain range
(0.4%) for coated specimens relative to uncoated specimens. Various methods
such as bleeding inert gas into the ID cavity during the test and additional
honing of the ID following heat treatment were evaluated to prevent
ID-initiated failures.

Specimen 113A was tested at 538-871°C (1000-1600°F), 0.5% strain range,
R =-1, and 1 CPM, with out-of-phase cycling. Its initiation and separation
lives were 1495 and 1967 cycles, respectively. These compare favorably with
specimen 119A, whose initiation and separation lives were 2073 and 3240,

respectively.

Specimen 1198 was run at a higher strain range (0.5%) and a higher temperature
range 538-982°C (1000-1800°F). The initiation and separation lives were 577
cycles and 731 cycles, respectively. As shown in Figure 19, SEM observations
once again confirmed the presence of porosity and multiple ID initiation sites
similar to that seen in specimen 119A. The lives of this specimen are similar
to the lives of the uncoated specimen (106C) tested at the higher temperature
range of 538-982°C(1000-1800°F) and do not reflect the 2X life increase for
coated specimens tested at 538-871°C (1000-1600°F) such as specimens 119A and
113A. Apparently different mechanisms are active at this higher temperature
range which diminishes the effect of the coating. One possible explanation is
that the actual stress state of the coating is quite different at the higher
temperature range, which could account for the lack of initjation life
increase with the coating.
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Specimen 112D was tested at 538-871°C (1000-1600°F), 0.4% strain range, and

R = -infinity. Its lives were 3661 and 5319 cycles which are lower than the
lives of uncoated specimens at similar conditions. This agrees with the
assumption that the coating relaxes rapidly at the high temperature end of the
cycle when the substrate is in compression. This results in high tensile
stresses in the coating at low temperatures and, hence, a coating life which
is not much different than when the cycle is fully reversed. The separation
life of the Specimen 112D was shorter than that of the uncoated test, Specimen

107C.

4,1.2 Qut-of-Phase Testing on Specimens Coated With PWA 273 Aluminide Coating

Specimen 114A, the first PWA 273 aluminide coated TMF specimen, was tested at
538-871°C (1000-1600°F), 0.4% strain range, R = -1, and out-of-phase cycling.
Its observed separation life was 8195 cycles, which is nearly twice that of
the overlay coated (PWA 286) specimens tested under the same conditions (1204,
120B). Replica data shows that the initiation life was 4753 cycles which is
1.4X higher than the lives of the PWA 286 coated specimens tested at similar
conditions. Optical examination of specimen 114A shows that there were
multiple initiation sites on both inner and outer diameters, but the majority
of initiations as well as the primary initiation occurred on the outer
diameter. Only the primary outer diameter initiation was examined by SEM as
only the OD surface involves the coating. As shown in Figure 20, the fracture
surface is heavily oxidized and the exact location of the crack origin cannot
be identified. The dark band between the coating and base material is the
diffusion zone.

Specimen 116D was tested at the same conditions as specimen 114A except at a
higher temperature range of 538-982°C (1000-1800°F). Its initiation and
separation lives were 1105 and 1535 cycles, respectively.

An aluminide coated specimen was out-of-phase tested at both a higher strain
range and temperature range. This specimen (115A) was tested at 538-982°C
(1000-1800°F), 0.5% strain range, and R = -1, Its initiation and separation
lives were 537 and 647 cycles, respectively, which are slightly lower than the
lives of uncoated specimens tested at similar conditions (specimen 106C).
Inspection of the fracture shows that the specimen failed from the ID.

Specimen 116C was tested at 538-871°C (1000-1600°F), a higher strain range of
0.5%, and R = —-infinity. Its observed initiation and separation lives were
1359 and 3997 cycles, respectively. The separation life was somewhat longer
than that of the uncoated specimen (46D). Also, specimen 115C was tested at
these same conditions but with R=-1; its initiation and separation lives were
1881 and 2687 cycles, respectively.
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4.1.3 In-Phase Testing on Specimens Coated With PWA 286 NiCoCrAlY Overlay
Coating

In-phase testing on PWA 286 coated specimen 120D was conducted at 538-871°C
(1000-1600°F), 0.4% strain range, R = -1, At these conditions, the primary
crack indication showed the initiation life to be 10,012 cycles. However,
after the crack reached 0.040", no growth was observed. To verify the
appearance of a crack, the specimen was uploaded to 0.5% strain range at
14,497 cycles at which time the crack immediately began to grow again;
separation occurred at 16,687 cycles. As in previous tests, these lives are
about twice the lives observed from the uncoated tests at these conditions
(specimen 128B). This suggests that the low ductility of the coating at low
temperatures is not a significant factor at low strains.

SEM examination of the fracture surface of specimen 120D showed it to be
heavily oxidized and did not reveal any unusual features that could be
associated with the crack growth behavior, except that location of the crack
origin was believed to be at subsurface porosity. Figure 21 is a SEM
micrograph of the initiation site showing the porosity.

4,1.4

An aluminide coated (PWA 273) specimen was tested at 1000 - 1600°F, 0.4%
strain range, R = -1, with in-phase strain-temperature cycling (specimen
114D). Its observed initiation and separation lives were 11,712 and 26,028
cycles, respectively,which are significantly higher than the lives of the
uncoated specimen tested at these conditions (128B, initiation life = 5127 and
separation life = 8138 cycles). Note that when comparing the coated to the
uncoated specimen the increase in separation life is much larger than that for
the initiation life (3.2X vs 2.3X) which indicates that, at these conditions,
the environment is important for crack propagation as well as initiation.

4,1.5 Elliptical Cycle Tests

Six coated specimen tests were completed under this series, two using
clockwise (CW) and four using counterclockwise (CCW) cycles. These cycles were
compared with the traditional in-phase and out-of-phase TMF cycles (see Figure
15). The CCW cycle is a good simulation of the strain-temperature history
experienced by many actual hot section components, although there are some
components which have a CW movement around their strain-temperature history.
The CW cycle results are most valuable when compared to the CCW results.

4.1.5.1 CW Elliptical Cycles

When subjected to CW elliptical strain-temperature cycling at 538-871°C
(1000-1600°F), 0.4% strain range, R=1l, 1 cpm, both coating systems were found
to show life reductions as compared to uncoated specimens, as can be seen from
the test results of Specimens 115B and 113D. Specimen 115B was coated with PwA
273 and specimen 113D was coated with PWA 286. The initiation and separation
lives for Specimen 115B were 2339 and 4253 cycles, respectively, and those for
Specimen 113D were 1450 and 4394 cycles, respectively. The lives for the PWA
286 coated specimen were slightly lower than the lives of the PWA 273 coated
specimen and were approximately one-half of the lives of the uncoated
specimens at these test conditions,
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4.1.5.2 CCW Elliptical Cycles

One PWA 286 coated specimen and three PWA 273 coated specimens were tested
under CCW strain-temperature cycling conditions. CCW loading produced the
highest lives for uncoated specimens.

Specimen 119C was coated with PWA 286 and tested at 538-871°C (1000-1600°F),
0.4% strain range, R = -1. Its initiation and separation lives were 11,125 and
16,123 cycles, respectively. Visual inspection of the fracture surface
indicated that the failure was from the OD. Although these lives are higher
than those of uncoated specimens at these conditions, they are less than what
was observed for out-of-phase and in-phase conditioms.

Specimens 114C, 115D and 116B were all aluminide coated (PWA 273). Specimen
114C was tested at 538-871°C (1000-1600°F), 0.4% strain range, R = -1. Its
initiation and separation lives were 9270 and 15,982 cycles, respectively,
which are 1.2 - 1.5X higher than the lives of uncoated specimens tested at
these conditions but slightly lower than the lives of the overlay coated
specimen (specimen 119C). These results suggest that the life increase
generated by CCW elliptical cycling affects the same mechanism that benefits
from coatings.

Specimen 115D (PWA 273 coating) was tested at 538-871°C (1000-1600°F) but at a
higher strain range of 0.5% (R=-1) as compared to 0.4% for specimen 114C. Its
lives were 1946 and 3538 cycles. The initiation life of this specimen is
similar to that resulting from out-of-phase cycling of PWA 273 coated
specimens at 0.5% strain range. It does not show the life increases seen for
uncoated specimens subjected to CCW cycling. The life increases resulting from
CCW elliptical cycling and from coating the specimens do not appear to add
directly.

Specimen 116B was tested at higher temperature conditions; 538-982°C
(1000-1800°F), 0.4% strain range, R = -1, Its lives were 2622 and 2703 cycles
which is a substantial life credit relative to the standard out-of-phase cycle
at these conditions. The short propagation time may indicate that the crack
originated on the ID or in the substrate and was propagating for quite some
time before detection by surface replication.

4,1.5.3 Comparison of CW and CCW Fracture Surfaces

Optical micrographs of a CCW tested specimen (114C) and a CW tested specimen
(115B), both PWA 273 coated, are shown in Figure 22. Both specimens had
multiple OD initiation sites. SEM examination of the primary initiation site
on the outside diameter of Specimen 114C shows a heavily oxidized fracture
surface with MC carbides at the locations indicated by the arrows in Figure
23. The fracture surface oxide prevents detailed examination of the fracture
that would pinpoint the exact nature of the initiation site. The PWA 273
coating at this location was measured to be 1.7 mils thick.

The SEM micrographs of specimen 115B shown in Figure 24 show that the fracture
is similar to that of specimen 114C. The surface is heavily oxidized and MC
carbides are seen in the vicinity of the origin (indicated by arrows). The PWA
273 coating measured 1.4 mils thick at this location. Possible dross was
observed at the inside diameter initiation site.
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Optical and SEM examinations were also made on two uncocated CCW elliptical
specimens tested at 538-871°C (1000-1600°F), 0.5% strain range, R=-1: 108D
(initiation life = 3652 cycles, separation life = 7024 cycles, and 125D
(initiation life = 1097 cycles, separation life = 2551 cycles). Both specimens
exhibited multiple initiation sites. The major initiation site of 108D is
shown in Figure 25 and that of 125D is shown in Figure 26. The shiny areas on
the fracture surface of 108D shown in Figure 25(a) are the result of damage to
the fracture surface that occurred after testing. Note that there is only
minimal porosity at the initiation site of 108D, while Figure 26 shows that
there is a high amount of porosity at the initiation site of 125D. This
condition may be the cause of the lower fatigue lives observed in this
specimen. No other features that may have played a role in the initiation of
cracks in these specimens (such as the carbides observed in two of the PWA 273
coated specimens) were seen. The fracture surfaces of these specimens are
similar overall to those of the other elliptical cycle specimens.

4,1.6 Hold Tests, Out-0f-Phase and In-Phase

Hold time TMF testing was conducted on five specimens at test conditions of
538-871°C (1000-1600°F), 0.4% strain range, one minute hold at maximum
temperature and using in-phase or out-of-phase loading. Two specimens were
tested uncoated, two specimens were coated with PWA 286, and one specimen was
coated with PWA 273, These tests demonstrated the effect of a high maximum
stress fatigue cycle accompanied by simultaneous creep damage.

Three specimens were tested using out-of-phase cycling with hold times; 123D,
120C and 113B. Specimen 123D was tested in an uncoated condition at 538-871°C
(1000-1600°F), 0.4% strain range, R = -1, with one minute hold at 1600°F and
-0.2% strain. Its initiation and separation lives were 1237 and 2689 cycles,
respectively. While the initiation life with hold time is shorter than those
of specimens not subjected to hold times, the crack propagation life (from
0.030" to 50% load drop is longer). This may have been due to inherent data
scatter since the increasing maximum tensile stress observed during the test
that results from out-of-phase cycling would usually be expected to shorten
the propagation life. Also a change in crack conditions may occur because of
the additional time spent at 871°C (1600°F).

Specimens 120C and 113B were both coated with PWA 286 overlay and were tested
using the same conditions as for specimen 123D: 538-871°C (1000-1600°F), 0.4%
strain range, R = -1, with one minute hold at 871°C (1600°F) and -0.2% strain.
These specimens had nearly identical initiation and separation lives. The
initiation and separation lives of specimen 120C were 2338 and 3270 cycles,
respectively and those of Specimen 113B were 2364 and 3377 cycles,
respectively. The PWA 286 coated specimens show an approximately 2X increase
in initiation life as compared to the uncoated specimen.
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Specimen 124A (uncoated) was run using in-phase cycling with a hold time at
538-871°C (1000-1600°F), 0.4% strain range, R = -1, with one minute hold at
871°C (1600°F) and +0.2% strain. Its initiation life was 4411 cycles and its
separation life was 11,054 cycles which were considerably longer than uncoated
Specimen 123D which had a one-minute compression hold at -0.2% strain and
871°C (1600°F). Figure 27 shows a plot of the specimen stresses vs. time for
Specimen 124A and it can be seen that the mean stress drifted downward
throughout the test. From the standpoint of the total specimen life, this
modified stress response apparently outweighed any detrimental effects caused
by having the crack held open at the high temperature, resulting in a
significant reduction in average damage per cycle.

CONDITIONS: 538-871°C {1000-1600°F), 0.4% Ae, R = -1, ONE MIN. HOLD AT +0.20%

SPECIMEN NO. =124A
200
150
& 100 —] a RLIAH< RANGE
o
")
%)
L
=
t 50
) . !
4 -\/\/MV\.N,,.-.,_‘,N MAXIMUM
0
— T~ T T ™M TN~ MEAN
-50
1 10 100 1000 10,000 100,000
CYCLES

Figure 27.- Stress Response for Tensile Hold TMF Test.

Figure 28 compares crack growth data from replicas of both in-phase and
out-of-phase uncoated TMF specimen tests, with and without a one minute hold
at the maximum temperature. It appears that the effects of the hold time at
maximum temperature on the specimen stress response has a strong influence on
the crack growth rate. The tensile hold that occurs for in-phase cycling
decreases the crack propagation rate due to the reduction in mean stress that
occurs as the test progresses. Note, however, that the initiation lives of the
hold time tests were lower than those of the corresponding tests without hold
times, indicating that the hold times also increased the damage rates during
the early portions of the test.
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Figure 28.,- TMF Crack Growth Data - Uncoated Specimens,

Specimen 116A was PWA 273 aluminide coated and tested to show the effects of
this coating on fatigue life during tensile hold conditions similar to those
conditions that an actual engine component may experience. This specimen was
tested at 538-871°C (1000-1600°F), 0.4% strain range, R = -1, in-phase
strain-temperature cycling with a one minute hold at +0.2% and 871°C (1600°F).
Its lives were 4659 and 11,092 cycles which are essentially the same as the
lives for the uncoated specimen (124A) tested at these conditions. This
indicates that for these conditions the damage mechanism is more related to
phenomena at the grain boundaries within the bulk rather than to surface
properties.

4,1.7 Dogleg Test

Specimen 113C utilized PWA 286 overlay coating and was tested at 538-871°C
(1000-1600°F), 0.5% strain range, R = -1, with "LGC" type dogleg strain-
temperature cycling. As shown in Figure 29, this cycle begins with a -0.25%
strain hold with temperature varying from 538-871°C (1000-1600°F) and back,
then 6 seconds strain excursion to +0.25% at 538°C (1000°F). These test
conditions were chosen to induce high coating stresses and hence early coating
cracking. The initiation and separation lives for this specimen were 742 and
1856 cycles, respectively, which are lower than the lives for the uncoated
specimen tested at the same conditions (45D; 1300 and 2096 cycles). The lower
lives for the coated specimen (0.6X for initiation) confirm that these test
conditions result in early coating cracking.
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Figure 29.- Dogleg TMF Cycles.

4.2 Task VI - Multiaxial Stress State Model

The purpose of this testing was to simulate engine operation conditions
encountered by certain areas of high temperature components such as
intersections of platforms and airfoils which have a high degree of
multiaxiality. For such locations some method is needed to determine the
parameters which best characterize the initiation life under those conditions.
Therefore a total of 26 tests using thin-walled (0.050") tubular specimens
were conducted to obtain crack initiation data for use in developing and
verifying a multiaxial stress state creep fatigue life prediction model. As
jllustrated in Figure 30, four types of strain cycles were employed; simple
tension, simple torsion, combined in-phase tension-torsion (proportional
loading) and combined 90° out-of-phase tension-torsion (non-proportional
loading). Additional variables were investigated which included temperature,
strain range, and strain rate. Table VI shows a matrix of all 26 tests
completed under this task. Appendix B lists the detailed test results for all
PWA 1455 multiaxial tests, including revised data for the four tests
previously reported.

Strain range and cycle type were both shown to be significant factors in
determining multiaxial life. The phase angle between axial strain and
torsional strain was also important, although frequently there was little
jnteraction between the two. Unusual levels of dross and/or porosity were
found to have caused premature cracking in four of the tests. This was mno
doubt caused by the casting process used to create the bars for these
specimens.

The configuration of the multiaxial specimen is considerably different from
that of the uniaxial specimens used in the baseline LCF testing and therefore
optical and TEM replica examinations were made in order to document the
microstructure. Both the grain size and gamma prime size were found to be
comparable to those for the uniaxial specimens. The specimen wall thickness
contains approximately two grains and elastic anisotropy effects may require
more careful consideration in the case of the multiaxial specimens than for
the uniaxial specimens.
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Figure 30.- Strain Cycles Used for Multiaxial

Testing.

TABLE VI

PWA 1455 MULTIAXTAL TEST MATRIX

Nominal Strain Cycle Type
Temp AS Freq.| Tension Torsion In-Phase Out-of-Phase
*(°F) (%) (CPM) | (Y=0) (Y=00) (v=1.%) (r=1.5; $=90°)
10 #12: 201 #16: 209 #22: 225 #l4: 214
0.50
1 #21: 211
1000
10 #9 : 220 #7 3+ 221 #10: 223 #11: 202 (X)
0.675 #23: 206
1 #13: 215
#2: 203 #5: 218 (X) #15: 205 (X)
10 #8 : 222 #6: 219 #26: 228 #19: 227
0.40
1 #25: 210 #20: 213
1600
10 #3: 217 #24: 212 #1l: 204 (X) #4: 216
#17: 226
0.50
1 #18: 207
Notes: 1. Table entries show #(test number): (specimen ID number)

2. (X) indicates a bad

test (due to dross, porosity, etc.)
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4,2,1 Simple Tension Cycling

A total of four specimens were tested using simple tension cycling. Specimen
201 was tested at 538°C (1000°F), 10 CPM and axial strain range of 0.523%. Its
initiation life was 4100 cycles; 50% tensile load drop was achieved at 5941
cycles. However, as with most of the multiaxial specimens, cycling was
jnadvertantly continued beyond 50% tensile load drop.

Specimen 220 was tested for a total of 6837 cycles at 538°C (1000°F), 10 CPM
and axial strain range of 0.679%; its initiation life was 1790 cycles. Optical
examination showed the fracture surface to be perpendicular to the
longitudinal specimen axis. Multiple initiation sites were observed on the
specimen OD. Figure 31 shows optical and SEM micrographs of the initiation
sites.

Specimen 217 was tested for a total of 2442 cycles at 871°C (1600°F) and 10 CPM
using an axial strain range of 0.494%. The initiation life of approximately
1107 cycles was consistent with the uniaxial tests of solid specimens at the
same conditions. Figure 32 shows optical and SEM micrographs of the crack
initiation site of specimen 217. As shown in Figures 32(b) and 32(c), the
crack initiated from porosity which is considered typical for the test
material. Two separate cracks eventually coalesced, and their initiation sites
were found on specimen surface replicas taken during test. Figure 33 presents
replica micrographs that show a crack evolving at one of the initiation sites
exhibiting an atypical surface appearance. As shown in Figure 33c, a 10-mil
long crack evolved after 800 cycles. Figure 34 shows these crack surface
length measurements from replicas versus cycles.

During the testing, it was discovered that the hysteresis loops for test
numbers 3, 4 and 5 showed successively higher levels of tensile mean stress
shift, as shown in Figure 35. Examination of the test rig revealed a
malfunctioning axial capacitance displacement probe which was repaired. The
cyclic life results of the tests run with tensile stresses are still valid
because R-ratio testing previously conducted on uniaxial, solid specimens
showed only moderate effects on cyclic life for these mean stress levels. Life
predictions for these specimens will account for these mean stresses.

Specimen 222 was tested for a total of 19,390 cycles at 871°C (1600°F), 10 CPM
and axial strain range of 0.402%. This test used the repaired axial capacitance
displacement probe so that no significant increase in tensile mean stress
occurred prior to crack initiation at 9629 cycles.
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Figure 34.- Crack Growth Data for Multiaxial Specimen 217 (tension only).
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4,2.2 Simple Torsion Cvcling

4.2.2.1 538°C (1000°F)

Specimen 209 was tested for a total of 24,366 cycles at 538°C (1000°F), 10 CPM
and a torsional strain range of 1.008%. The crack initiation life of 20,188
cycles appeared to be high but may be attributable to the greater degree of
scatter in this life regime. Optical and SEM observations of specimen 209 are
shown in Figure 36. As shown in Figure 36(a), this specimen had five crack
segments. The short center segment is 71° from the longitudinal specimen axis
while the other longer segments are 39° and 49° from the longitudinal specimen
axis. Optical examination of the fracture surface revealed that some rubbing
of the opposing fracture surface features occurred during testing, as shown in
Figure 36(b). Multiple OD initiation sites were examined by SEM but the
origins could not be identified due to rubbing damage. A typical SEM
fractograph showing multiple initiation sites and some secondary cracking is

shown in Figure 36(c).

Specimen 221 was tested for a total of 2332 cycles at 538°C (1000°F) and 10
CPM at a torsional strain range of 1.362%. This strain range was significantly
larger than the levels used at 871°C (1600°F) because of the increased life
capability at 1000°F. As shown in Figure 37, the final crack configuration was
complex with three cracks meeting at one point. Two of the cracks were at
45°-50° from the longitudinal specimen axis which corresponded to the maximum
normal strain planes and was consistent with the cracking planes observed for
pure torsion at 871°C (1600°F). In examinations of other multiaxial specimens,
the fracture surfaces were found to be perpendicular overall to the
longitudinal specimen axis (i.e., they did not slant from I.D. to 0.D.).
However, the fracture surface of specimen 221 was observed to have a slant.
Multiple origins were found along the 0.D. of the sample. SEM micrographs of a
typical initiation site on the 45° fracture surface are shown in Figure 38.
The exact nature of the initiation sites (carbide or porosity) could not be
determined. The crack growth mode was transgranular.

4.2.2.2 871°C (1600°F)

Specimen No. 203 was tested for a total of 11,224 cycles at 871°C (1600°F) and
10 CPM with a torsional strain range of .805%. The final crack was 1.6" long
and was slanted at an angle of 45° with respect to the longitudinal axis of
the specimen, as shown in Figure 39(a). This corresponded to the maximum
normal strain planes. The most likely site for initiation was determined by
finding the location along the crack where separation between the two crack
faces was greatest, The suspected initiation site is shown in Figure 39(b).
Note the secondary crack propagating at right angles to the primary crack.
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The fracture surfaces of specimen 203 were examined optically and by SEM.
Figures 40(a) and 40(b) show the optical and SEM micrographs, respectively, of
the crack initiation site of Specimen 203. The secondary crack is clearly
visible in Figure 40(b). No anomalous features were evident at the initiation
site.

Specimen 210 was tested in pure torsion at 871°C (1600°F), 0.804% torsional
strain range and 1 CPM. Its initiation life was 5440 cycles but the test was
discontinued after 5523 cycles because of the long rig time involved (92 hrs.).

Specimen 219 was tested for a total of 45,500 cycles at 871°C (1600°F) and 10
CPM using a pure torsional strain range of 0.729% . The surface replica taken
after cessation of testing showed numerous small cracks (0.035 inch long
maximum) oriented at #45° to the specimen longitudinal axis throughout the
gage length. Figure 41 presents micrographs of surface replicas taken during
the test that showed the evolution of the longest crack. Figure 42 shows crack
growth data based on crack surface length measurements from these replicas
versus cyclic life. It can be seen that a small crack developed prior to
10,000 cycles but grew very slowly and did not reach the initiation size of 30
mils until 40,000 cycles. This behavior differs considerably from the previous
torsional test (specimen 203) conducted at a higher strain level in which a
dominant crack developed early with few secondary cracks and grew much more
rapidly to failure.

Specimen 212 was tested in pure torsion at 871°C (1600°F) at 1.014% torsional
strain range, and 10 CPM. Its initiation life was 2337 cycles, and the total
test 1life 3770 cycles. These lives can be compared directly with those from
Specimens 203 and 219, which were run at the same conditions but at lower
strain ranges.

Comparison of pure torsion and axial loading results show that, on a maximum
normal strain range basis, the pure torsion lives were essentially the same as
those obtained using axial loading alone.

The initiation life of pure torsion Specimen 210 can be compared directly with
those from Specimens 207 and 213, which were run at the same low frequency but
with out-of-phase, tension-torsion conditions. The results from all three tests
indicated that, on a maximum normal strain range basis, the slow rate (1 CPM)
lives were approximately half those obtained using the fast rate (10 CPM).

4.2.3 Combined In-Phase Tension-Torsion Cycle (Proportional Loading)

4.2.3.1 538°C (1000°F)

Specimen 223 was tested for a total of 6090 cycles at 538°C (1000°F) and 10
CPM using an axial strain range of 0.509% and a torsional strain range of
0.775% in-phase. Its initiation life was 1708 cycles, with 50% tensile load
drop occurring at 2880 cycles. Specimen 225 was tested at 1000°F with 0.384%
axial strain range, 0.569% torsional strain range, in-phase, and 10 CPM. Its
jnitiation life was 6164 cycles, and the total test life was 11222 cycles.
These lives are in good agreement with other in-phase data, in that the
in-phase tests tend to show slightly higher lives than tests run at the same
total maximum normal strain range but with 90° out-of-phase loading or with
axial loading alone.

53



*joead Aaewtad o3 xernorpuadasd }orad Livpuooss
Surmoys @31Ts UOTIBFIFUT JO sydeafoidTu RS (4) pue 1eoradp (®)
* (ATuo uotrsiol) gQg uswioads TBIXEIITNR Q% 2an3T1g

54



(ATup uoysio]) g1z uswpoedg TREXBFATNW jJO sedITdey @dejang jo sydea3o01dTR T4 2an3tg

(431134 ¥OVHO JONVHNI OL
VOIld3H NO Q3LVHOJVAI SYM INOHHO) T |
STTOAD 005°SH LV NOVHO DNOT TN GE SI10AD 61978 LV HIVHO DNOT TN Z1

tp) (0

‘0L LV YOVHO ONOT TIN &

@ L | (e)

S —
. NINZO

55



0.050
r

QO REPLICATION

SURFACE CRACK LENGTH, INCH

0.010

L L - |

N 1
0 10,000 20,000 30.000 40,000 50.000
LIFE, CYCLES

0.005

Figure 42.- Crack Growth Data for Multiaxial Specimen 219 (Torsion Only).

4.2.3.2 871°C (1600°F)

Specimen 204 was tested for a total of 1085 cycles at 871°C (1600°F) and 10
CPM with an axial strain range of 0.371% and a torsional strain range of
0.541%. This specimen had an initiation life of 350 cycles, which is very low
relative to other specimens. A tantalum (Ta) rich area at the initiation site
of this specimen was found during SEM examinations, and in view of the low
life of this sample, this area was further analyzed by electron microprobe. A
SEM micrograph and Ta x-ray map of this area are shown in Figures 43(a) and
43(b), respectively. The specimen was sectioned longitudinally through the Ta
rich area as indicated by the dashed line in Figure 43(a) and the schematic
diagram of Figure 44(a). A SEM micrograph of the longitudinal section at the
area of the initiation site is shown in Figure 44(b). It can be seen that an
oxide layer ranging in thickness from 2 x 10~3mm to 3 x 10~2mm was present

at the fracture surface as well as at a secondary crack beneath the fracture.

X-ray energy spectroscopy results showed this oxide to be Ta rich. This type
of oxide buildup suggested that the crack initiated from dross at location A
instead of from a Ta tich MC carbide as was suspected earlier. The presence of
dross is believed to be responsible for the unexpected low life of this
sample. In order to prevent future low life tests, the remaining untested
multiaxial specimens were screened for unacceptable surface and subsurface
discontinuities by fluorescent penetrant, visual and xX-ray inspections. No
such problems were detected by these techniques in any other specimen.
Therefore, specimen 204 will not be included in life correlationms.
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Specimen 226 was tested for a total of 9653 cycles at 871°C (1600°F) and 10
CPM using an axial strain range of 0.355% and a torsional strain range of
0.544% applied in-phase. This specimen was subjected to the same conditions
used on specimen 204, whose life was severely limited by dross. The crack
initiation life of 5811 cycles was much greater (16X) than that of the prior
test confirming the deleterious effect of the dross. In both specimens the
crack was oriented at 65° to the longitudinal axis which corresponded to the
maximum normal strain plane. However, the life of specimen 226 is somewhat
higher than expected based on the normal strain correlation.

Specimen 218 was tested for a total of 9801 cycles at 871°C (1600°F) and 10
CPM using an axial strain range of 0.291% and a torsional strain range of
0.439% in-phase. No surface replication was performed on this specimen;
however, based on crack growth data from previously tested specimens, the
crack initiation life was estimated at 6615 cycles. Optical and SEM
examinations of specimen 218 showed this specimen had one crack at an angle of
65° from the longitudinal specimen axis, as indicated in Figure 45(a). The
optical and SEM micrographs of Figure 45(b) and 45(c) show that there was an
jnitiation site at the midwall of the sample as well as another possible
initjation site at the specimen I.D. To determine the cause for this midwall
initiation, further SEM examinations using x-ray mapping were made. Figure
46(a) is a conventional SEM image of the midwall initiation site, and Figure
46(b) is its associated x-ray map for tantalum (Ta). The Ta rich area is
believed to indicate the presence of dross which may be responsible for the
midwall initiation. Further work was undertaken to characterize the size of
the dross; however, this initial observation indicated that the dross in
Specimen 218 was probably much smaller than the dross found in specimen 204.
Because of this dross related initiation, the life of specimen 218 will not be
included in life prediction correlations.

Specimen 228 was tested at 871°C (1600°F), 0.307% axial strain, 0.457%
torsional strain, in-phase, and 1 CPM. The test was terminated at 39,467
cycles, and its initiation life was estimated as 56000 cycles. These
conditions duplicate those used for specimen 218, which cracked very early
(6615 cycles initiation life) from Ta-rich dross in the middle of the wall of
the gage section. Since specimen 218 had lives which were about one-eighth
those from specimen 228, earlier testing on specimen 218 was discounted. As
noted above, the results of this test show that there is a trend for the
in-phase tests to produce lives vwhich are slightly higher than those from
tests run at the same total maximum normal strain range but with 90°
out-of-phase loading or with axial loading alome.
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4,2.4 Qut-of-Phase Tension-Torsion (Non-Proportional)

4.2.4.1 538°C (1000°F)

Specimen 202 was tested for a total of 543 cycles at 538°C (1000°F) and 10 CPM
using an axial strain range of 0.680% and a torsional strain range of 1.027%
applied 90° out-of-phase. The crack initiation life was 240 cycles which was
only 1/8 of the initiation life of the specimen (220) tested earlier in pure
tension using the same axial strain range. As shown in Figure 47(a), the
fracture surface of specimen 202 was overall perpendicular to the longitudinal
specimen axis, which corresponded to the maximum normal strain plane, although
sections of the crack grew at oblique angles to the specimen axis. The longest
such section was near the center of the crack and was at an angle of 45° to
the longitudinal specimen axis which corresponded to the maximum shear strain
plane. The specimen exhibited 0.D. initiation sites which originated from
porosity. Figure 47(b) is a SEM micrograph of a typical initiation site
showing porosity at the origin., Some of the details of the fracture surface
were obscured by rubbing that occurred during testing. Comparison of the life
of this test with those from similar tests indicates, however, that this test
is anomalous. It will therefore not be included in life prediction
correlations.

Specimen 214 was tested for a total of 9544 cycles at 538°C (1000°F) and 10
CPM using an axial strain range of 0.503% and a torsional strain range of
0.758%, applied 90° out-of-phase. The crack initiation life of 5210 cycles is
4X greater than the 871°C (1600°F) test of specimen 216 using the same strain
levels. The initiation life was also consistent with simple tension and
in-phase test results (specimens 201 and 225). Optical and SEM observations of
specimen 214 are shown in Figure 48. As shown in Figure 48(a) this specimen
had one main crack that undulated somewhat but was overall perpendicular to
the longitudinal specimen axis. The optical micrograph of Figure 48(b) and the
SEM micrograph of Figure 48(c) both show the occurrence of extensive rubbing
of opposing fracture surface features. This rubbing action prevented
observation of any initiation sites by SEM.

Specimen 206 was tested at 538°C (1000°F), 0.692% axial strain, 1.027%
torsional strain range, 90° phase angle, and 10 CPM. Its initiation life was
1417 cycles, and the total test life was 2544 cycles. These conditions
duplicated those used for Specimen 202, which cracked very early from a region
of porosity in the gage section. Since specimen 202 had lives which were about
one-sixth those of Specimen 206, the earlier test was discounted. Results of
Specimen 206 also compared favorably with those from specimen 214, which was
run at the same conditions but with a lower strain range. It should be noted
that the lives of both of these specimens are close to those of other tests
run in tension alone (specimens 220 and 201) when compared on a maximum normal

strain basis.
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Specimen 211 was tested at 538°C (1000°F), 0.504% axial strain range, 0.748%
torsional strain range, 90° phase angle, and 1 CPM. Its initiation life was
1454 cycles, and the total test life was 3111 cycles. These lives can be
compared directly with those from Specimen 214, which was run at the same
conditions but at a 10 CPM rate. That test showed an initiation life of 5210
cycles, and it can be seen that the slow rate life is significantly lower
(one-fourth). This contradicts findings from the uniaxial fatigue testing in
which no rate effect was seen at this temperature.

The test conditions for specimen 215 were exactly the same as those for
specimen 206 except that the frequency was 1 CPM instead of 10 CPM. Specimen
215 was tested for a total of 918 cycles at 538°C (1000°F) and 1 CPM using an
axlal strain range of 0.681% and a torsional strain range of 1.024% applied 90°
out-of-phase. The initiation life of 486 cycles was approximately one-third
the initiation life of specimen 206, once again demonstrating a frequency
effect of reduced life for the lower frequency even at 538°C (1000°F),.

Optical and SEM observations of specimen 215 are shown in Figure 49. This
specimen had three crack segments approximately 53°, 65°, and 87° from the
longitudinal specimen axis as shown in Figure 49(a). The optical micrograph of
Figure 49(b) shows the occurrence of extensive rubbing of opposing fracture
surface features., This rubbing action is also evident in the SEM micrograph of
Figure 49(c) which prevented examination of the initiation site(s). The above
observations indicated that extensive rubbing of opposing fracture surface
features occurred for tests 90° out-of-phase and that examination by SEM of
specimens tested under these conditions may not provide useful information.

4.2.4,2 871°C (1600°F)

Specimen 205 was tested for a total of 16,504 cycles at 871°C (1600°F) and
10 CPM using an axial strain range of 0.294% and a torsional strain range of
0.443%, applied 90° out-of-phase. The crack initiation life of 11,434 cycles
appeared to be low considering the low strain ranges used for this test.
Detailed metallographic investigations were therefore carried out on this
specimen.

Optical and SEM observations of Specimen 205 are shown in Figure 50. This
specimen had one main crack 81° from the longitudinal specimen axis, as shown
in Figure 50(a). Optical examination of the fracture surface revealed that
extensive rubbing of opposing fracture surface features occurred during
testing which obscured the fracture surface features as shown in Figure 50(b).
A SEM micrograph showing oxide buildup on the fracture surface is shown in
Figure 50(c).
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During previous examinations numerous secondary cracks were noted below the
major crack along specimen 205. One of these areas was spot polished and then
etched in order to determine the crack path. The optical micrograph of Figure
51 shows that the secondary cracks grew transgranularly. SEM examination of
the specimen revealed areas on the side of the specimen that have a rumpled
appearance such as that shown in the area of the secondary crack in Figure 52
which may have been caused by the presence of dross that could affect the life
of the test. The specimen was examined by microprobe which indicated that the
rumpled appearance resulted from mechanical deformation of the oxide layer on
the surface of the specimen. As shown in Figure 53, the rumpling effect was
seen only near the fracture surface which indicated that contact of the
opposing fracture surfaces resulting from out-of-phase loading deformed the
side surface of the specimen near the fracture surface and caused the rumpled
appearance of the oxide. This same mechanism is thought to be responsible for
the rumpling around the secondary crack shown in Figure 52. Porosity was also
noted as shown in Figure 54(a), which shows porosity in evidence on the side
of the specimen in the vicinity of the fracture surface and Figure 54(b) which
shows porosity on the fracture surface itself. The extent to which this
porosity may have influenced the life of the test is difficult to determine
due to the extensive rubbing of the fracture surfaces which eliminated
virtually all fracture surface details. However, as with specimen 202,
comparison of the life of specimen 205 with those of other tests (such as
specimen 227 discussed later) shows that it is much too low. It will therefore
not be included in life model correlatiomns.

Specimen 227 was tested using a new extensometer and was run at 871°C
(1600°F), 0.402% axial strain range, 0.606% torsional strain range, 90° phase
angle, and 10 CPM. Its initiation life was 13,794 cycles. This life is
actually longer than that of specimen 222, which was run at the same
conditions, except without the torsional strain. Also, it is longer than the
life of specimen 205 which was run at similar conditions but with much lower
strain ranges.

Specimen 207 was tested for 834 cycles at 871°C (1600°F) and 1 CPM, using an
axial strain range of 0.500% and a torsional strain range of 0.756% applied
90° out-of-phase. The crack initiation life of 327 cycles is about one-fourth
of the life of specimen 216, which was tested at the same conditions except at
a faster rate (10 CPM). This frequency effect was considerably greater than
that noted in baseline tests at the same axial test conditions. In those tests
the initiation lives of specimens tested at 1 CPM were still about 75% of the
lives of those tested at 10 CPM.

Specimen No. 216 was tested for a total of 1973 cycles at 871°C (1600°F) and
10 CPM using an axial strain range of 0.494% and torsional strain range of
0.742% with the strains applied 90° out-of-phase. Comparison of the resulting
initiation life of 1313 cycles with that for the uniaxial test at the same
tensile strain range (1107 cycles) indicated that there was no detrimental
effect due to the non-proportional loading path of this test.
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Figure 51.- Secondary Cracks on Side Surface of Multiaxial Specimen #205 871°C
(1600°F), AE£=0.294%, AY= 0.443%, ¢= 90°, 10 cpm, Total Test
Length = 16504 Cycles). Cracks are growing in a transgranular mode.
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A suspected initiation site, shown in Figure 55, was sectioned out for
characterization by SEM. Replicas showed that three separate cracks grew
simultaneously perpendicular to the longitudinal specimen axis, then linked up
by means of crack segments roughly parallel to the specimen axis. Optical
micrographs of two adjacent crack segments are shown in Figure 56. The
out-of-phase loading caused extensive rubbing of the opposing fracture
surfaces which obscured most fracture surface details and therefore no SEM
observations were made on this sample.

Specimen 213 was tested at 871°C (1600°F), 0.442% axial strain range, 0.663%
torsional strain range, 90° phase angle, and 1 CPM. Its initiation life was
1911 cycles, and the total test life was 4682 cycles. These results agreed
with those from specimen 207, since the lives of both specimens were many
times lower than those of comparable tests run at 10 CPM (specimens 216 and
227).

4.2.5 Dislocation Observations in Multiaxial Specimens

TEM examinations were made of four multiaxial specimens to document the
dislocation structures that arise during various types of loading conditionms.
These examinations were usually performed on foils taken from longitudinal
sections. Specimens tested in pure tension at 871°C (1600°F), pure torsion at
538°C and 871°C (1000°F and 1600°F), and tension-torsion 90° out-of-phase at
871°C (1600°F) were chosen for study.

The dislocation structure of specimen 217 [871°C (1600°F)], axial strain =
+0.250%, pure tension, 10CPM) after 2442 cycles was examined using TEM foils
taken from both longitudinal and transverse sections of the gage section. This
was done in order to determine if there was an orientation effect on the
appearance of the dislocation structure. The dislocation structure of specimen
217 as seen in longitudinal and transverse foils is shown in Figures 57 and
58, respectively. The dislocation density appears higher in the transverse
section than in the longitudinal section, since the transverse foil could be
taken closer to the fracture surface than was possible for the longitudinal
foil (0.10 in. vs. 0.25 in.). However, other than the dislocation density, no
significant difference was found between the two orientations.

The typical dislocation structure of specimen 221 [538°C (1000°F), torsional
strain = +0.675%, pure torsion 10 CPM] after 2332 cycles is shown in Figure 59.
Extensive dislocation tangles were present in the matrix surrounding the
y'particles and straight dislocation segments were seen cutting through 7'
particles. This structure was markedly different from that observed in a pure
torsional specimen tested at 871°C (1600°F) (specimen 203, torsional strain =
+0.404%, 10CPM) which had networks of short dislocation segments, roughly
parallel to one another, enveloping 7' particles at the Y/Y' interface with
the 7' particles themselves being relatively free of dislocations as shown in
Figure 60. The difference in dislocation structure in specimens tested at
538°C (1000°F) and 871°C (1600°F) is an apparent result of the inability of
the dislocations to cross slip at the lower temperature. This caused the
dislocations to pile up at the 7/7' interface and to also cut through v
particles as stresses built up.
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TEM examinations performed on specimen 216 [871°C (1600°F), axial strain =
+0.250%, torsional strain = +0.375%, 90° out-of-phase, 10 CPM] reveal
dislocation structures as shown in Figure 61 which are similar to those
previously observed in the pure torsion specimen 203 and the in-phase,
tension-torsion specimen 204 [871°C (1600°F), axial strain = +0.185%,
torsional strain = 40.260%, in-phase, 10 CPM] consisting of wavy dislocation
segments that were roughly parallel to one another surrounding ¥' particles.

4.3 Task IX - Environmental Attack Model

The environmental creep-fatigue test program consists of 27 tests utilizing
B1900+Hf solid smooth baseline fatigue test specimens. The initial screening
tests were conducted in three different environments: lab air, high pressure
oxygen (same partial pressure as encountered in high pressure turbines), and
high purity argon. The remaining tests will use the environment which produces
the largest effect and will examine sequence effects to support development of
an advanced life model which can account for the observed life trends.

During this reporting period, a total of eight initial screening tests in lab
air and 75 psia oxygen were completed at baseline conditions at both 871 and
982°C (1600 and 1800°F). In general, the higher oxygen partial pressures
caused lower specimen lives, with initiation life being more influenced than
propagation life. However, the argon screening tests produced inconclusive
data, due in part to mechanical problems (air/water leaks). Another factor may
be that the type of oxide scale which forms in very low partial pressures of
oxygen may be more porous than the oxide which forms at higher pressures. The
detailed data for these tests is found in Appendix C. The test matrix covering
the tests conducted during this reporting period is shown in Table VII.

: TABLE VII
ENVIRCNMENTAL SCREENING TESTS

Test Matrix and Results

Conditions A Lab Air Shop Air 60 Psi O,_
Spec. Wi N¢ Spec. Nj Nf Spec. Nj N¢

871°C (1600°F), 124D 1350 5632 123A 560% 1443 111C 674 2245
+.25%, slowl Base2 929 2773

982°C(1800°F), 123B 1320 2493 111D 559 1216
+.20%, slow 112A 460 1000
982°C(1800°F), 124B 1560 4464 112C 924 2641e3

+.20%, Fastl

lusiow” = 1.67 x 1074 sec ~1; "Fast": = 1.67 x 103 sec —1

2vBage" = median of baseline test results

3Life estimated from replica data; failed prematurely at 958 cycles
40w test results believed to be caused by contaminated atmosphere
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4.3.1 Baseline Lab Screening Tests

Three tests were run in laboratory air with the pressure chamber open. One
duplicated the low strain rate, 871°C (1600°F) test conditions from the base
program, whereas the other two tests were run at low strain, 982°C (1800°F)
conditions which had not been run before.

Specimen 124D was tested in laboratory air at 871°C (1600°F) and 1.0 CPM using
a strain range of 10.25%; its lives were 1350 and 5632 cycles which were
significantly higher than the lives of Specimen 123A which was tested in shop
air at these conditions.

Specimen 123B was tested in laboratory air at 982°F (1800°F) and 1.25 CPM
using a strain range of 10.20%; its initiation and separation lives were 1320
and 2493 cycles, respectively. The initiation life appeared to be consistent
with baseline testing at the same temperature and strain rate but using a
higher strain range.

Specimen 124B was tested in laboratory air at 982°C (1800°F) and 12.5 CPM
using a strain range of 10.20%; its initiation and separation lives were 1560
and 4464 cycles, respectively. Compared to Specimen 123B, the initiation life
increased by a factor of 1.2 while the propagation life increased by a factor
of 2.5. These results indicated that the environment may affect crack
propagation more than initiation at these conditions.

4.3.2 Shop Air Testing

Specimen 123A was tested at 871°C (1600°F) and 1 CPM using a strain range of
40.25%. In order to check out the operation of the environmental rig apparatus
when subjected to a working pressure, an environment of +5 psi shop air
(regular compressed air used by the manufacturing shop) was used in this test,
resulting in initiation and separation lives of 560 and 1443 cycles,
respectively. This life is marginal when compared to baseline test specimens
which indicates that the shop air environment might have had an adverse
effect. It is probable that contaminants were present in the shop air which
accelerated the envirommental attack during this test.

4,3.3 High Pressure Oxygen Testing

Four high-pressure oxygen screening tests were completed. For these tests, the
chamber was first evacuated and then filled with oxygen to 60 psig (75 psia).
This simulated the highest partial pressure of oxygen seen by modern hot
section components.

Specimen 111C was tested at 871°C (1600°F), 0.5% strain range, R=-1, and 1
CPM, and had initiation and separation lives of 674 and 2245 cycles,
respectively. This was about half the lives of typical specimens tested at
these conditions in lab air during the baseline testing. Interestingly, they
were slightly higher than the lives of Specimen 123A, which was tested at
these same conditions but in 5 psig of shop air. This provides additional
evidence that contaminants were present in the shop air which accelerated the
environmental attack during that test.
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Specimen 111D was tested at 982°C (1800°F), 0.4% strain range, R=-1, and 1.25
CPM, and its initiation and separation lives were 559 and 1216 cycles,
respectively. As with specimen 111C, this was about half the lives of typical
specimens tested at these conditions in lab air during the baseline testing.
Some problems were encountered with the extensometry during this test,
resulting in slight overloads on three occasions. Another specimen (112A) was
tested at these same conditions to verify these results., Its lives were 460
and 1000 cycles, which were slightly lower than the lives of 111D. This
indicated that the problems encountered with the extensometry during the test
of 111D did not significantly lower its life.

Specimen 112C was tested at 982°C (1800°F), 0.4% strain range, R=-1, and 12.5
CPM, which were the same conditions used for the previous test (1124), except
at a faster rate. The initiation life of 112C was 924 cycles, which was double
the life of the specimens tested at the slower rate. Specimen 112C failed at
958 cycles from a crack which developed at one of the extensometer contact
points. By comparing the data from similar specimen tests, it was estimated
that the separation life of this specimen would have been 2641 cycles if it
had not failed prematurely. This life also doubles that of the slower strain
rate tests.

4.3.4 Purified Argon Testing

Several trial runs of the environmental chamber with an argon atmosphere were
made. For these tests the specimen was heated to 982°C (1800°F) for several
hours with no load to see how well this arrangement prevented oxidation of the
specimen surface. The argon was continuously processed to an indicated level
of 1x10~7 ppm oxygen. However, it was found that a few drops of water leaked
into the chamber from the water lines needed to cool the extensometer and
other hardware inside the chamber. These apparently provided enough free
oxygen in the immediate vicinity of the specimen to cause a bluish tint to the
surface. After these leaks were repaired, the temperature exposure caused only
a slight straw color on the specimen surface. Several techniques were
evaluated to eliminate completely all such oxidation effects during actual
specimen testing in the argon atmosphere. Actual testing in this environment
will be covered during the final contract reporting period.

4.4 Task X - Protective Coating Models

Since protective coatings are frequently used on components made from cast
superalloys to resist oxidation and corrosion, a practical life prediction
system must be able to account for the effects of such coatings. To provide a
basis for understanding those effects under isothermal conditions, a total of
8 overlay coated (PWA 286) specimen tests have been completed at 871°C
(1600°F) and 982°C (1800°F). A matrix of these tests is given in Table VIII,
with most of the conditions being identical to base program tests to provide
direct comparisons. These tests also serve as complements to the overlay
coated TMF tests described under Section 4.0. A detailed listing of the test
data generated under this task is found in Appendix D.
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TABLE VIII
COATED PWA 1455 ISOTHERMAL TEST MATRIX

Coating Type: PWA 286 Overlay; 0.13 mm. (0.005 in.) Nominal Thickness

Cvcle Type and Life Results

Temp R Fast Rate! Slow Rate! Tensile Hold
(°C{°F))  (in/in) Spec Ny Nf Spec Ny N¢ Spec N;  Ng

871(1600) 0.005 0 117A 3799 4041 118C 2349 3262 118D 1618 3794e2
982(1800) 0.004 -1 1188 3857 6429 118A 3409 3830

982(1800)  0.005 -1 1170 643 6433

982(1800) 0.005 0 1178 1780 2000

982(1800) 0.008 -1 117C 395 420

Notes: 1. "Fast: = 1.67§1o-3sec"; "sTow" = 0.83x10~4sec™1,871°C (1600°F);
1.67x10"4sec™!, 982°C/1800°F
2. 60 sec. hold at max strain; specimen failed at 2147 cycles under

extensometry rods. o
3. Specimen failed under extensometer rods; no cracks visible in gage section.

Specimen 117A was tested at 871°C (1600°F), 0.5% strain range, R=0, and 10
CPM; its lives were 3799 and 4041 cycles. This separation life was essentially
the same as the median separation life of uncoated specimens tested at these
conditions during the base program, but the initiation life as determined by
surface replication was approximately 3X higher. This apparent rapid
propagation indicated that the failure actually initiated in the substrate
under the coating, and the crack growth monitored by surface replication
reflected the growth of coating cracks only. Optical and SEM micrographs of
the fracture surface of Specimen 117A are shown in Figure 62. It can be seen
that the crack initiated at porosity in the base material beneath the coating
and that crack initiation and growth in the base material could occur before
the crack would be visible through the coating. This agrees with the crack
propagation behavior as determined by surface replicas. The actual initiation
life of this specimen may be lower than surface replica results indicate.

Specimen 117B was tested at 982°C (1800°F), 0.5% strain range, R=0; its lives
were 178 and 2000 cycles. Since the median lives of baseline specimens tested
at the same conditions were 115 and 820 cycles, the initiation life of this
coated specimen is somewhat higher and the separation life dramatically higher
than those of the uncoated baseline testing. Apparently oxidation was a very
important factor in the initiation life of this alloy at 1800°F and this
strain level. This specimen was checked for subsurface initiation by both
optical microscopy and SEM. Typical micrographs are shown in Figure 63. The
exact location of the initiation site is unclear and it is unknown if
subsurface crack initiation occurred.
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The next coated specimen (117C) was also tested at 982°C (1800°F), but at a
higher cyclic rate (6.25 CPM) and at a high, fully reversed strain range
(£0.4%). Its initiation and separation lives were 395 and 420 cycles,
respectively. Since the median lives of baseline specimens tested at the same
conditions were 56 and 278 cycles, the initiation life of 117C was about 7X
than those of the uncoated baseline testing, while the separation life is only
about 1.5X higher. As expected, this shows a slightly reduced sensitivity to
coating than was seen on the slow rate, low strain test at 1800°F. The faster
cyclic rate increased the proportion of damage caused by fatigue and reduced
the amount caused by oxidation. Optical and SEM examinations were made of the
fracture surface of Specimen 117C and are shown in Figure 64. The crack
initiated at porosity in the base material. It is possible that subsurface
crack growth occurred before being visible at the coating surface although
indications of this are not as clear as they are for Specimen 117A.

Specimen 117D was tested at 982°C (1800°F), 0.5% strain range, R=-1 and 1 CPM.
Unfortunately, it developed cracks under the extensometer contact points and
was discontinued at 643 cycles with a 10% load drop. No cracks were visible in
the specimen gage section by this time. Even so, this life was more than
double the initiation life seen with uncoated specimens at these conditions.

Specimen 118A was tested at 982°C (1800°F), 0.4% strain range, R=-1, and 1.25
CPM; its lives were 3409 and 3830 cycles. This initiation life was much higher
than expected from the uncoated baseline tests, even though no specimens were
run at these exact conditions. The propagation life was quite short as was
expected for a slow rate, 982°C (1800°F) test. Since these results indicated a
strong effect of the environment on initiation, these same conditions were
used for testing under Task IX.

Specimen 118B was tested at 982°C (1800°F), 0.4% strain range, R=-1 and 8 CPM;
its lives were 3857 and 6429 cycles. This initiation life was approximately the
same as seen with specimen 118A which used the same conditions except with a
slower rate (1.25 CPM). This indicated that this life was not significantly
affected by time, primarily due to the coating. However, the propagation life
was much longer than seen during the test at the slow rate (2600 vs. 420
cycles). It was interesting to note that the time of the propagation from 0.03
in. to separation was nearly identical for the two tests (5.4 vs. 5.6 hr.).
These results indicated the influence of the environment on propagation as
well as on initiation which must be considered when evaluating life prediction
models for coated materials.

Specimen 118C was tested at 871°C (1600°F), 0.5% strain range, R=0, and 0.5
CPM; its lives were 2349 and 3262 cycles. This initiation life was
approximately 4X higher than seen during the baseline testing at the same
conditions, while the separation life was about 2X higher. However, the
propagation life was about the same (roughly 1000 cycles) for both types of
tests. These results suggested that, at these conditions, environment was a
greater influence on initiation than on propagation. It was also possible that
the crack in this specimen actually initiated in the substrate and not in the
coating and therefore replica data is overestimating the initiation life.

87



*93TS UOT3eTITUT 3o sydeaBoadjw RIS (q) pue Tedfadg ()
* (891940 (007 = °JTT uorieaedas “saT24d (g/1 = @31
UOTIBTITUT ‘wdd | ‘0 = ¥ “%G°0 = 3V “(d,00L1) 2,286 9,11 uswydadg %9 2an8t1y

X499

ww gt

88



Specimen 118D was tested at 871°C (1600°F), 0.5% strain range, R=0, with a one
minute hold at +0.5% strain. The uncoated specimens run at these same
conditions experienced intergranular fracture and low initiation lives (median
life 220 cycles). However, the initiation life observed on the surface of this
coated specimen was 1618 cycles, more than 7X higher. The specimen failed at
2147 cycles under one of the extensometer rod contact points, with the gage
section crack being 0.040 in. at that time. Typical propagation data from
other tests indicated that the separation would have been 3794 cycles if the
specimen had not failed prematurely. This indicated that the propagation life
from 0.030 in. to separation would have been similar to what was observed
during the uncoated verification tests.

4,5 Task XI - Cyclic Mean Stress Model

A total of 25 controlled mean stress tests are planned for this task. Five of
these tests under TMF conditions have been completed and are reported in this
interim report; the detailed test data is given in Appendix E., The remaining
20 tests are under isothermal conditions and will be conducted using special
mean stress-strain range control software available at the University of Rhode
Island.

The major conclusions from this testing are as follows:

1. Mean stress was shown to have a dramatic effect on TMF life. A
moderately tensile mean stress reduced the initiation life, whereas a
slight compressive mean stress actually caused crack growth to slow
down and eventually stop.

2. The results cannot be accounted for by linear summation of creep and
fatigue damage. Total damage sums were only 0.25 for some tests
(instead of 1.0 as expected from linear damage accumulation theory).

Specimen 109C was tested under load control at 30150 ksi, 538-871°C
(1000-1600°F), with in-phase temperature cycling. Based on previous creep and
TMF tests, these conditions were expected to yield a typical stress rupture
life of 1700 cycles and a typical TMF initiation life of 5800 cycles. However,
the actual separation life was only 227 cycles, with a large increment of
inelastic strain being accumulated during each cycle. Initially, it was
thought that specimen 109C actually failed by ratchetting rather than by creep
or fatigue. However Figure 65 shows a plot of the mean strain history of this
specimen, and it can be seen that the strain increment per cycle was not
really constant. The form of the curve is actually rather typical of high
strain rate creep tests.

Specimen 110D was tested at the same conditions used for specimen 109C, except
with 10450 ksi; its lives were 1914 and 2454 cycles. Figure 65 shows the mean
strain history for this specimen as well as for the higher mean stress test
(109C), and its behavior was also typical of creep tests. Note that the lives
of both of these specimens were much lower than what would be expected from
standard strain controlled TMF testing at the same strain range.
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Fixed conditions: 538-8719C (1000-1600°F),
in-phase, 100 ksi stress range

+ 30 ksi mean

+ 10 ksi mean

0.004 — 10 ksi mean
0 1 l 1 | ! : |-
0 1000 2000 3000

Life, cycles

Figure 65.— Mean Strain Histories for Load Controlled TMF Tests.

Detailed TEM examinations of TMF specimens 109C and 110D were conducted to
determine if there was some difference in their dislocation structure, perhaps
caused by a measure of ratchetting in the higher mean stress test. Typical
dislocation structures of 109C and 110D are shown in Figures 66 and 67,
respectively. Both have dislocations in the 7 matrix and encasing 7' particles
at the 7/7' interface. No significant features were seen in the dislocation
structure of 109C that would distinguish it from that of 110D. Based on these
observations it did not appear that there was a dislocation structure
associated with the ratchetting phenomenon. It was noted that there appeared
to be more dislocations cutting through Y' particles in 109C and that the
extent of dislocation buildup in 109C was approximately the same as that of
110D despite the order of magnitude lower number of cycles on 109C. This was a
reflection of the higher mean stress level applied to 109C.

Specimen 111B was tested at -10+50 ksi, 538-871°C (1000-1600°F), with in-phase
temperature cycling. The crack grew to 0.030 in. by 5611 cycles, but the
growth slowed considerably beyond that point. By 16,503 cycles, the crack was
still only 0.071 in. long, and the rate of growth was very small. The test was
terminated at this point to examine the crack by breaking open the specimen.
The mean strain history for this specimen is also shown in Figure 65.

Specimen 114B was tested at 538-871°C (1000-1600°F), 90 ksi stress range +15
ksi mean stress, with in-phase strain-temperature cycling; its initiation life
was 5765 cycles, which is close to the life to 1% creep at these conditions.
This indicated that the strain cycling had little effect on the creep life.
The separation life was 7062 cycles which showed about the same propagation
life as for other TMF tests at similar conditions.

Specimen 112B was tested at 538-871°C (1000-1600°F), 100 ksi stress range, -10
ksi mean stress, with out-of-phase strain-temperature cycling. The initiation
life was 2684 cycles, which indicated that there was very little effect of
creep on this test, since this was essentially the same as the predicted life
due to strain cycling alone. The test was stopped at 7062 cycles with a 0.145
in. crack, which was similar to the behavior of strain controlled tests
conducted at similar conditions.
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4.6 Task XII - Final Verification and Evaluation of the Alternative
Material/Protective Coating System/Component Combination

In order to verify the general applicability of the life prediction models
developed under this contract, additional testing is planned for an
alternative material. Since cast B1900+Hf was used for the baseline testing,
wrought INCO 718 was chosen as the alternative alloy. During this reporting
period, initial monotonic and fatigue tests were completed; details of the
fatigue tests are found in Appendix F.

4.6,1 Monotonic Testing

Three notched (Kt=3.8) stress rupture specimens were tested during this
reporting period. The first test was specimen 427, which was tested at 649°C
(1200°F) and 110 ksi for 120 hours. Comparison with published smooth data at
similar conditions indicates good notched strength. The second test, specimen
428, was conducted at 732°C (1350°F) and 40 ksi stress. The test was
discontinued after more than 1500 hours at these conditions. Finally, the
third specimen, 429, was run at 732°C (1350°F) and 50 ksi stress for a total
of 621 hours. Taken together, these tests demonstrate very good notched
rupture strength for this material at high temperatures.

4.6.2 Isothermal Fatigue Testing

Four isothermal fatigue specimen tests were completed during this reporting
period. Preference was given to high temperature, slow rate tests due to rig
availability. Specimen 718-1 was tested at 732°C (1350°F), 0.8% strain range,
R=-1 and 1 CPM; its lives were 1339 and 2939 cycles. The specimen displayed
significant cyclic softening at these conditions, with a reduction in stress
range from 167 ksi at cycle 1 to 136 ksi at 1500 cycles. Specimen 718-2 was
tested at the same conditions except with 0.65% strain range; its lives were
4719 and 6506 cycles. Specimen 718-3 was tested at 649°C (1200°F), 0.8% strain
range, R=-1, and 1 CPM; its initiation life was 2122 cycles, which was higher
than the life of the specimen at the higher temperature. However, its
separation life was 2868 cycles, which is slightly lower than the 2939 cycles
seen during the higher temperature test. Finally, specimen 718-4 was tested at
649°C (1200°F), 0.65% strain range, R=-1, and 1 CPM, and its lives were 11,066
and 13,332 cycles.

The microstructures of specimens 718-1 and 718-2 are shown in Figures 68(a)
and 68(b), respectively. These micrographs are from the center of the
specimens in the gage section. Both specimens show more of the fine needle
shaped § phase along grain boundaries as compared to the material in the
as-received condition. The amount of § phase appears greater in 718-2,

C-2—
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Optical examinations were made of the fracture surfaces of specimens 718-1 and
718-2. Figure 69 shows the fracture surface of 718-1, with multiple initiation
sites as indicated by the arrows. The overall fracture surface appearance was
indicative of a mixture of predominantly transgranular with some intergranular
crack growth except in the immediate vicinity of the initiation sites where the
fracture had a faceted appearance. Optical micrographs of 718-2 are shown in
Figure 70, again with multiple initiation sites indicated by the arrows. Opti-
cally the fracture surface was similar to that of 718-1, with transgranular
crack growth at the initiation sites and a mixture of predominately trans-
granular growth with some intergranular crack growth overall. SEM examinations
were also completed on 718-1. The primary initiation site is shown in Figure
71(a). Based on the appearance of the fracture surface, the crack propagated

1 mm in a transgranular mode before changing to mixed mode growth. A higher
magnification view of the initiation site is shown in Figure 71(b).

These early results suggest that the particular rolled-ring AMS 5663 forging
used to produce these specimens has excellent creep resistance as well as good
fatigue capability. Of particular interest is the pronounced cyclic softening
noted during the fatigue testing at 732°C (1350°F). It is possible that some
modification to the form of the CDA model will be necessary to account for
this.
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SECTION 5.0
DISCUSSION OF RESULIS

5.1 TMF Data Trends and Life Prediction Modeling

In order to discern the effects of the variables investigated under TMF
conditions for coated PWA 1455 material, the results of this testing must be
compared with those from the uncoated tests reported in the previous interim
report (Nelson et al, 1986). For the in-phase and out-of-phase tests, Figure
72 shows a plot of initiation life vs. total mechanical strain range, along
with median life lines from uncoated TMF tests at the same conditions. Note
that the coated data lie approximately 2X higher in life than the uncoated
data, indicating that for these conditions, the coatings reduced the damage
done by mechanisms such as oxidation. It is kmown, however, that the reverse
ijs often true: coatings can themselves reduce the life under certain TMF
strain cycles. This was the case with the "LC dogleg" cycle test run with an
overlay coated specimen. This particular cycle caused a high tensile strain to
occur in the coating and therefore resulted in early coating cracking. Figure
73 shows that the initiation life of this specimen was somewhat lower than the
lives of coated specimens tested with out-of-phase cycles. In fact, the
initiation life of this specimen was lower than what had been observed for
uncoated specimens using the "LC dogleg" cycle. This once again serves to
emphasize the need to understand and model the actual damage mechanisms active
under TMF conditions. Simple data correlations based on only certain cycle
types may not always give conservative predictions.

O Qut-of-phase Open — overlay

x1073 O In-phase Solid — aluminide
52 ~ \
N\ \
AN \ o®
N \
4.8} N
Total \\\
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40r \o .\\\~D
B;E COATED w
36 1 QUT-OF -PRASE ] iIN PHASE ]
100 1000 10,000 100,000
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Figure 72.- Coating Effects for In-Phase and Out-of-Phase TMF Testing.

99



x10~ O Qut-of-phase Open - overlay
520 0 Dogleg Solid - aluminide
o ©®

48}
Total
strain  4.4f
range

36 ] i J

100 1000 10,000 100,000

Initiation life, cycles

Figure 73.- Dogleg Cycle Path Effect for Coated Specimens.

Perhaps the most interesting results obtained during this task are those from
the elliptical cycle tests. As mentioned earlier, these were designed to give
insight into the behavior of actual engine components which experience strain-
temperature cycles similar to these. Figure 74 shows a plot of the elliptical
test results for the coated specimens relative to the median lives from the
out-of-phase coated tests. Clearly there is approximately a 5X initiation life
difference between the two types of elliptical cycles. Note that life
predictions methods based solely on the extremes of a cycle will not be able
to predict this behavior, since they cannot distinguish between CW and CCW
cycles.
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Figure 74.- Elliptical Cycle Path Effects.
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The results of strain hold tests for both coated and uncoated specimens are
shown in Figure 75 relative to data from continuously cycled TMF tests. Note
that the hold time causes a large debit for both the coated and the uncoated
specimens, but that the coating still gives approximately the same life
increase over the uncoated material no matter which cycle was used. This
information helps to quantify the level of environmental interaction under
these cycle conditions.
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Figure 75.- Effect of Hold Time at Maximum Cycle Temperature.

Figure 76 shows the results of the four coated specimens which were run at a
higher temperature range 538-982°C (1000-1800°F) to determine if trends seen
at the baseline temperature range would still hold true. It is clear that all
the data are shifted lower in life than the median data from the lower
temperature range. However, note that the life increase for an elliptical
cycle relative to an out-of-phase cycle is still present.

Several new techniques were evaluated during the period of this report to
enhance the ability of the basic Cyclic Damage Accumulation (CDA) life model
to predict TMF initiation life. These include the following:

1. Modified integration techniques for cycle-by-cycle calculation of
damage under TMF conditions.

2. Prediction of inelastic strain ratios using viscoplastic constitutive
equations.

3. Use of the general purpose optimization program ADS (Vanderplaats et
al, 1983) for determination of life model coefficients.

4, Evaluation of alternative equations for the CDA time-independent
damage term.

Work will continue on these methods during the remaining part of the optional
program, and those which are ultimately incorporated into the CDA model will
be discussed in detail in the final report.
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Figure 76.- Effect of Temperature Range.

5.2 Multiaxial Data Correlations

Evaluation of various multiaxial life prediction parameters has continued,
with maximum principal strain range still giving the best correlation and this
also agrees with the experimentally observed crack directions. Plots based on
this parameter are shown in Figure 77 for the 538°C (1000°F) data and Figure
78 for the 871°C (1600°F) data. Most of the results fall in line using this
parameter, with the low strain rate tests being lower than the fast rate
tests. Of particular interest is the effect of frequency seen at 538°C
(1000°F), which was not observed at all during the baseline uniaxial tests.
The in-phase data at 871°C (1600°F) also is not well predicted using this
parameter alone. Various revisions to the CDA model are being considered to
improve the accuracy of the predictions for these tests, but the final
selection of the form of the model will be made after the evaluation of the
INCO 718 multiaxial data is completed during Task XII.

5.3 Selection of Environmental Models

The majority of the effort under this task was performed earlier and was
reported in CR-179550. The earlier work surveyed and screened environmental
candidate models and developed a method to evaluate test specimens. This led
to selection of a candidate life prediction model for environmental effects
during this period. The model has the potential to predict the environmental
(oxidation) effects on the cyclic creep-fatigue life of superalloys. The
initial form of the model consists of a modification of the time dependent
damage term of the Cyclic Damage Accumulation (CDA) life model to account for
the faster accumulation of damage in an oxidizing environment. It has been
observed that preferential oxidation of surface connected MC carbides can
enhance the initiation of cracks in cast Ni-base alloys. This infers that
direct penetration of oxygen results in time dependent damage,
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The kinetics of preferential oxidation of MC carbides can be described as a
diffusion process with a time dependence (oxidation tT with n = 1/4) and

an Arrhenius temperature dependence (K = A exp(-Q/RT)). At longer times under
static conditions, there is a saturation of the process. However it is
expected that there will be an acceleration of carbide oxidation with cyclic
stressing and possibly with increased partial pressure of oxygen. A schematic
of these relationships is shown in Figure 79. Since the reference damage rate
(dD/dNRgr) is established for the given temperature, temperature is not a
variable.

An oxidation damage factor (fox) which modifies the time dependent damage rate
is a function of depth of oxygen penetration (loy) as shown in Figure 80.
Depth of oxygen penetration and consequently damage factors can be determined
for the new and reference conditions. Multiplying the time dependent damage
term in the CDA life model by the ratio (fox/foxpgp) accounts for the
different accumulation of oxidation damage.

The revised time dependent damage rate is:

. B :
(%) N (%>R”[( AZI;EF >( “T,;EF )] ': —t,é,_)c - ]]<T(f_§’;> (7

It is expected that this initial form of the model will be subject to further
revision as more data becomes available from the environmental testing
(Task IX).

5.4 Effects of Coating on Isothermal Specimens

These specimens showed initiation lives as determined by replica data which
were 2X-7X higher than the lives of uncoated specimens run at similar
conditions. In some cases, the replica data may be overestimating the
initiation lives due to subsurface cracking. This was the case for several
specimens and is a result of the high ductility of the PWA 286 coating at the
temperatures used for this test. It is also possible that the effect of
oxidation was significantly reduced by the coating, so long as the ductility
of the coating was not exceeded. However, other test conditions are known to
result in early coating cracking and hence a lower life for a coated specimen
relative to an uncoated one. Situations such as these clearly require a life
model with at least two different modes of damage to capture correctly both
coating and substrate initiation lives. The coating life model being developed
under a companion HOST contract (Swanson et al, 1987) is being integrated with
the CDA model to accomplish this capability. The environmental model developed
under Task IX will be used to increase the life of the substrate in the
presence of uncracked coatings. The detailed form of this model will be
discussed in the final report.
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Figure 79.- Schematic Showing Depth of Oxygen Penetration to be a Function of
Time, Stress and Partial Pressure of Oxygen at Constant
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Pigure 80.~ Schematic showing Possible Relationship Between Damage Factor and
Depth of Oxygen Penetration.

5.5 Creep-Fatigue Interaction During Mean Stress TMF Testing

A common practice for prediction of life under creep-fatigue conditions is
linear summation of creep and fatigue damage fractions. An interaction plot
based on this model is shown in Figure 81 for the three back-to-back in-phase
TMF tests completed under this task. Note that the assumption of linear damage
summation does not hold for these tests; predicted lives for the high mean
stress tests would be approximately 3X too high. Preliminary review of data
from the isothermal tests being conducted at URI shows similar trends. This
indicates that non-linear interactions will be needed for accurate life
predictions of this data. Revisions to the CDA life prediction model are
underway to account for this and will be discussed in detail in the final
report.
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Fixed conditions: 538-871°C (1000-16000°F),
in-phase, 100 ksi stress range

1.0 T\ O + 30 ksi mean
\ A +10 ksi mean
— 0.8 N\ { — 10 ksi mean
(t/'tc) \\
1% creep 06— \
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Figure 81.- Interaction Diagram for Load Controlled TMF Tests.
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SECTION 6.0
CONCLUSIONS

This report covers the activity under NASA Contract NAS3-23288, "Creep Fatigue
Life Prediction for Engine Hot Section Materials (Isotropic)", for the period
from October 1985 through April 1987. During this time, a series of high
temperature, strain controlled fatigue tests were completed to study the
effects of complex loadings such as thermomechanical fatigue, multiaxial
loading, reactive environments, and imposed mean stresses. Most of these tests
used the cast nickel-base superalloy B1900+Hf (with and without coatings) as a
baseline alloy. A small number of alternate alloy tests were run using wrought
INCO 718.

Under Task V, Thermal-Mechanical Cycling Model, a total of 25 thermomechanical
fatigue (TMF) tests were completed (12 specimens with PWA 286 overlay coating,
11 specimens with PWA 273 diffusion coating, and 2 uncoated specimens).
Various revisions and enhancements to the CDA life prediction model were
studied for TMF life prediction. The major conclusions which resulted from
this effort were as follows:

1. Strain range and cycle type were both shown to be significant factors in
determining coated TMF life. As with the uncoated TMF tests, the phase
angle between strain and temperature for elliptical cycle tests
(clockwise vs. counterclockwise) was also very important, especially at
low strain ranges.

2. For the conditions used in this task, the presence of the coatings in
general increased the specimen lives by 2-5X. This is in contrast to most
actual service conditions, in which the coating will crack prematurely
when exposed to high local strains. This was confirmed by judicious
selection of a cycle type which resulted in high coating strains and
hence lower life than an uncoated specimen.

Under Task VI, Multiaxial Stress State Model, a total of 26 strain controlled
multiaxial fatigue tests were completed during this period. The major
conclusions which resulted were as follows:

1. Strain range and cycle type were both shown to be significant factors in
determining multiaxial life. The phase angle between axial strain and
torsional strain was also important, although frequently there was little
interaction between the two.

2. A strong frequency effect was noted at both 538°C (1000°F) and 871°C
(1600°F), whereas such an effect was seen during simple tension baseline
tests only at the higher temperature.

3. Unusual levels of dross and/or porosity were found to have caused
premature cracking in four of the tests. This was no doubt caused by the
casting process used to create the bars for these specimens. The grain
size and gamma prime site were found to be comparable to those of the
uniaxial specimens. The specimen wall thickness contains approximately
two grains and therefore elastic anisotropy effects may be more important
in the case of the multiaxial specimens than for the uniaxial specimens.
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4, Out-of-phase loading caused extensive rubbing of the opposing fracture
surfaces which obscured mot of the fracture surface details.

5. The best parameter used thus far for multiaxial life prediction for the
PWA 1455 data is maximum principal strain range which agrees with
experimentally observed crack directions.

Under Task VIII, Screening of Potential Environmental and Protective Coating
Models, a model was selected and approved for further study and development.
This consists of a damage term which modifies the time-dependent term of the
CDA as a function of time, temperature, and oxygen partial pressure,

Under Task IX, Environmental Attack Model, a total of 8 screening specimen
tests were completed using moderate pressure oxygen (75 psia, which is the
partial pressure of oxygen in the engine operation), lab air, and purified
argon. In general, the higher oxygen partial pressures caused lower specimen
lives, with initiation life being more influenced than propagation life.
However, the argon screening tests produced inconclusive data, due in part to
mechanical problems (air/water leaks). Another factor may be that the type of
oxide scale which forms in very low partial pressures of oxygen may be more
porous than the oxide which forms at higher pressures.

Under Task X, Protective Coatings Models, a total of 8 strain controlled
isothermal fatigue tests were completed. The important conclusions from this
activity were as follows:

1. For the conditions tested, initiation lives of these coated specimens
were significantly higher than the lives of uncoated specimens run at the
same conditions. This may be due to the tendency for replica data to
overestimate initiation life when subsurface cracking occurs. It is also
possible that the coating reduced the influence of the environment on the
PWA 1455 substrate.

2, For several specimens, the failure origin was in the substrate, not in
the coating itself. This is due to the high ductility of this coating at
the high temperatures used for these tests.

A multi-mode damage model is being incorporated into the CDA framework to
allow accurate prediction of these results from Tasks IX and X. The substrate
initiation will be handled as though it is taking place in an inert
environment. The coating initiation will be calculated separately.

Under Task XI, Cyclic Mean Stress Model, a total of 5 load controlled TMF
tests were completed. These tests were run at various mean stresses to provide
an understanding of what mean stress means in the context of varying
temperature. The major conclusions from this testing are as follows:

1. Mean stress was shown to have a dramatic effect on TMF life. A modest
tensile mean stress cut the initiation life by more than 90%, whereas a
slightly compressive mean stress actually caused crack growth to slow
down and eventually stop.

2. The results are not well explained by linear summation of creep and
fatigue damage. Total damage sums were only 0.25 for some tests (instead
of 1.0).
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A method has been developed at the University of Rhode Island to permit a test
to be conducted with independent control of both strain range and mean stress.
This has been checked out and will be used for the remaining isothermal mean
stress tests.

Under Task XII, Final Verification and Evaluation of Alternative
Material/Protection Coating System/Component Combination, a rolled ring
forging of AMS 5663 (INCO 718) was obtained and specimens were machined and
prepared for use (including electropolishing). A total of 4 isothermal fatigue
tests and 3 notched stress rupture tests were completed.
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Specimen Identification

Type of Specimen

Test Conditions:
Temperature
n

Axial Strain Range

APPENDIX B-1

B1900+HF MULTIAXIAL TESTS
TENSION ONLY, FAST RATE

oC
&

Axial Strain R-Ratio (min/max

Axial Strain Rate

TJorsional Strain Range

(1/sec

Torsional Strain R-Ratio (min/max

Torsional Strain Rate

(1/sec

Strain Ratio (torsional/axial
Strain Phase Angle §degrees
Frequency cyc/min

Axial Stress-Strain Response:
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APPENDIX B-2
B1900+HF MULTIAXIAL TESTS
TORSION ONLY, FAST RATE

Specimen Identification 209 221 203 219 212
Type of Specimen Fig. 14C Fig. 14C Fig. 14C Fig. 14C Fig. 14C

Test Conditions:

Temperature g“C} 538. 538. 871. 871. 871.
" oF 1000. 1000. 1600. 1600. 1600,
Axial Strain Range 0.000000 0.000000 0.000000 0.000000 0.000000
Axial Strain R-Ratio (min/maxg 0.000 0.000 0.000 0.000 0.000
Axial Strain Rate (1/sec 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
Torsional Strain Range 0.010080 0.013620 0.008050 0.007290 0.010140
Torsional Strain R-Ratio (min/max; -0.998 -1.002 -1,002 -1.002 -1.000
Torsional Strain Rate (1/sec 3.36E-03 4,54E-03 2.68E-03 2.43E-03 3.38E-03
Strain Ratio (torsional/axial 0.000 0.000 0.000 0.000 0.000
Strain Phase Angle gdegreesi 0.000 0.000 0.000 0.000 0.000
Frequency cyc/min 10.000 10.000 10.000 10.000 10.000
Axial Stress-Strain Response:
Stress Range, Init szq 0.0 0.0 0.0 0.0 0.0
" " " psi 0.0 0.0 0.0 0.0 0.0
Stress Range, Nf/2 §Mp§ 0.0 0.0 0.0 0.0 0.0
Mean Stress, In Foa 0:0 0:0 0’0 0:0 00
ean Stress, Init Mpa 0. . . . .
S < B N S = S A
ean Stress, Nf Mpa . 0. . . .
! " " gpsi 0.0 0.0 0.0 0.0 0.0
Inel Stn Rng, Init 0.00000 0.000000 0.00000 0.00000 0.00000
Inel Stn Rng, Nf/2 0.000000 0.000000 0.000000 0.000000 0.000000
Torsional Stress-Strain Response:
Stress Range, Init Mpa 659.2 853.9 410.9 405.7 564.2
" W " psig 95599.9 123844.0 59600.0 58847.0 81824.9
Stress Range, Nf/2 Mpa; 665.6 894.5 421.1 384.9 553.6
" " N psi 96538.7 129729.0 61076.6 55829.1 80284.9
Mean Stress, Init Mpa -0.5 -0.2 -1.1 -4.3 -2.6
" S " “/2 psi -73.0 -24.0 -162.2 -629.8 -378.2
Mean Stress, Nf Mpa 1.2 -1.4 -3. -9. .
" " N psig 166.9 -205.5 -529.0 -1310.4 59.2
Inel Stn Rng, Init 0.000059 0.001129 0.000348 0.000176 0.000511
Inel Stn Rng, Nf/2 0.000055 0.000033 0.000629 0.000380 0.000726
Life Results:
Initiation (0.030 in.) cycles 20188. 1739. 8100. 40000. 2337.
et he i cAr I I
ensile Load Drop cycles 510. . . . .
50% Tensile Load Drop cycles 23590. 2213. 10820. 62000.1 3745,
Actual End of Test cycles 24366. 2332, 11224, 45500. 3770.

Note: 1. Specimen 219 discontinued at 45,500 cycles; load drop lives estimated.
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Specimen Identification

Type of Specimen

Test Conditions:
Temperature
"

Axial Strain Range
Axial Strain R-Ratio

&

(min/max

Axial Strain Rate (1/sec

Torsional Strain Range

Torsional Strain R-Ratio (min/max

)
)

)

Torsional Strain Rate (1/sec
Strain Ratio (torsional/axial)
Strain Phase Angle Edegreesg
Frequency cyc/min

Axial Stress-Strain Response:
Stress Range, Init
L} n n
Stfess Ragge, NE/Z
Mean Stress, Init
n n "
Mﬁan Stxess, Nﬁ/Z

Inel Stn Rng, Init
Inel Stn Rng, Nf/2

Mpa
psi
Mpa
psi
Mpa
psi
Mpa
psi

Torsional Stress-Strain Response:

Stress Range, Init Mpa
" n " pS i
Stress Range, Nf/2 Mpa
n n ] ps -i
Mean Stress, Init Mpa
n n ] ps -‘l
Mean Stress, Nf/2 Mpa
n n 1] pS 1'
Inel Stn Rng, Init
Inel Stn Rng, Nf/2
Life Results:
Initiation (0.030 in.) cycles
5% Tensile Load Drop cycles
10% Tensile Load Drop cycles
50% Tensile Load Drop cycles
Actual End of Test cycles

Notes: 1. Low lives due to dross, inclusions (see

2. Specimen 228 was discontinued at 39,467

APPENDIX B-3

B1900+HF MULTIAXIAL TESTS
IN-PHASE TENSION-TORSION, FAST RATE

225
Fig. 14C

538.
1000,
.003840
-1.002
.28E-03

.005690
-1.001
.90E-03

1.482
0.000
10.000

- O = O
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88662.9
614.1
89059.1
0.4

58.5

6.9
1005.0
0.000071
0.000033

0.000064

6164,
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7580.
9580.
11222,

223
Fig. 14C
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1000.
.005090
-0.998
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.007750
-1.001
.58E-03

1.523
0.000
10.000

N O - o

0.000093
0.000012

485.5
70409.9
490.7
71167.6
-2.8
-410.0
-3.2
-465.9
0.000022
0.000114

1708.
2533.
2598.
2880.
6090.
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218
Fig. 14C
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.70E-04
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-0.897
.46E-03

1.509
0.000
10.000

= O w o

427.
62041.
424.
61495,
-2.
-322.
141.
20586.
0.000136
0.000132

NP O MNO WO

232.9
33771.0
234.7
34036.3
-1.7
-248.5
-18.1
-2626.6
0.000180
0.000175

6615.
9030.
9070.
9450.
9801.

e e

228
Fig. 14C
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1600.
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-1.000
.02E-03
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-1.000
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1.489
0.000
10.000

[ = Y= R e |

403.
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9.
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0.000090
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ML= OwWwWod

56000.
65000.
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204
Fig. 14C

871,
1600.
0.003710
-1.002
.24E-03

.005410
-0.996
.80E-03

1.458
0.000
10.000

—_ O e

437.
63471.

60983.
38

5613.

3188.1

0.000260
0.000150

. . .
CONMNOOO,

242.8
35215.0
236.5
34302.1
-2.2
-313.5
2.7
-391.3
0.000318
0.000335

350.
609.
639.
714.
1085.

text); not used for life model correlations.
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Fig. 14C
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cycles with 0.004 in. crack; all lives estimated.



Specimen Identification

Type of Specimen

Test Conditions:
Temperature
H

Axial Strain Range

(oc
(°F

Axial Strain R-Ratio (min/max
Axial Strain Rate (1/sec

Torsional Strain Range

Torsional Strain R-Ratio (min/max

Torsional Strain Rate (1/sec
Strain Ratio (torsional/axial
Strain Phase Angle gdegrees
Frequency cyc/min

Axial Stress-Strain Response:
Stzess Ragge, Igit
StEess Ragge, Nf/z
Msan Stgess, Igit
Msan StEess, NE/Z

Inel Stn Rng, Init
Inel Stn Rng, Nf/2

Mpa
psi
Mpa
psi
Mpa
psi
Mpa
psi

Torsional Stress-Strain Response:

St:ess Ragge, Igit
St:ess Ragge, Nf/Z
Msan St:ess, Igit
Mean Stress, Nf/2
W 1 i
Inel Stn Rng, Init
Inel Stn Rng, Nf/2

Life Results:

Mpa
psi
Mpa
psi
Mpa
psi
Mpa
psi

cycles

Initiation (0.030 in.) Ecyc1es

5% Tensile Load Drop
50% Tensile Load Drop

cycles
cycles

10% Tensile Load Drop {cyc1es

Actual End of Test

)
}

)

i

APPENDIX B-

4

B1900+HF MULTIAXIAL TESTS
QUT-OF -PHASE TENSION-TORSION, FAST RATE

214
Fig. 14C
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N O = O
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Fig. 14C
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0.000377

240,
369.
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431,
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Note: 1. Low lives due to dross, inclusions (see text);
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model
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Fig. 14C
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B1900+HF MULTIAXIAL TESTS

APPENDIX B-5

SLOW RATE, TORSION ONLY AND OUT-OF-PHASE

Specimen Identification

Type of Specimen

Test Conditions:

Temperature €°C)
" OF)

Axial Strain Range

Axial Strain R-Ratio (min/maxg

Axial Strain Rate (1/sec

Torsional Strain Range
Torsional Strain R-Ratio (min/maxg

Torsional Strain Rate (1/sec
Strain Ratio (torsional/axial
Strain Phase Angle gdegrees
Frequency cyc/min

Axial Stress-Strain Response:

Stress Range, Init EMpag
n n n ps 1‘
Stress Range, Nf/2 EMpa
n L] " ps 1‘
Mean Stress, Init éMpa
n n W ps -i
Mean Stress, Nf/2 §Mpa
n H " ps -i

Inel Stn Rng, Init
Inel Stn Rng, Nf/2

Torsional Stress-Strain Response:

Stress Range, Init Mpa;
n n n ps-'l

Stress Range, Nf/2 gMpag
n n L 4 ps:l
Mean Stress, Init iMpa
n N L} ps-i
Mean Stress, Nf/2 EMpa
n L] n psi

Inel Stn Rng, Init
Inel Stn Rng, Nf/2

Life Results:
Initiation (0.030 in.) cyc1es;

5% Tensile Load Drop cycles
10% Tensile Load DBrop cycles
50% Tensile Load DOrop cycles
Actual End of Test cycles

Note: 1. Specimen 210 was discontinued at 5523 cycles; load drop lives estimated.
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Specimen Identification

Type of Specimen

Test Conditions:

Cycle Type
Tempesature Ragge 2:?
Stress Range Mpa
" n> pSi
Stress R-Ratio émin/max
Stress Rate Mpa/sec
" " §psi/sec
Frequency cyc/min
Tension Hold sec
Compression Hold sec

Stress-Strain Response:

Strain Range, Init
Strain Range, Nf/2
Mean Strain, Init
Mean Strain, Nf/2
Inel Stn Rng, Init
Inel Stn Rng, Nf/2

Life Results:

Initiation cycles
5% Load Drop cycles
10% Load Drop cycles
50% Load Drop cycles

Note: 1. Specimen 111B was discontinued at 16,503 cycles with

APPENDIX E
PWA 1455 MEAN STRESS TESTING

LOAD CONTROLLED TMF

109C
MERL 73C

IN
538-871
1000-1600
671.5
97382.6
-0.2503
2.24€+01
3.25E+03
1.000
0.000
0.000

0.004150
0.004250
0.002040
0.006570
0.000200
0.000142

177.
213.
218.
227.

110D
MERL 73C

IN
538-871
1000-1600
671.3
97366.4
-0.6678
2.24E+01
3.25E+03
1.000
0.000
0.000

0.004150
0.004310
0.001200
0.005010
0.000148
0.000185

1614.
2331.
2380.
2454,

1118
MERL 73C

IN
538-871
1000-1600
670.5
97238.7
-1.5063
2.23E+01
3.24E+03
1.000
0.000
0.000

0.004040
0.003350
-.000090
0.000520
0.000176
0.000189

5611.
>16503.!
>16503.!
>16503.!
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1148
MERL 73C

IN
538-871
1000-1600
604.2
87622.9
-0.5002
2.01E+01
2.92E+03
1.000
0.000
0.000

0.003730
0.003740
0.000860
0.007210
0.000154
0.000124

5765.
7095.
7244.
7468.

a 0.071 in.

1128
MERL 73C

ouT
538-871
1000-1600
698.1
101251.0
-1.5002
2.33E+01
3.38E+03
1.000
0.000
0.000

0.004230
.004240
.000590
.003790
.000193
.000073

O L O

2684.
6709.
6850.
7062.

crack.



Specimen Identification

Type of Specimen

Test Conditions:

Temperature
]

Strain Range

oFS

Strain R-Ratio (min/max

Strain Rate
Frequency
Tension Hold

Compression Hold

Stress-Strain
Stress Range,
L] n
Stress Range,
L ] n
Mean Stress,

" "
Mean Stress,
" L]
Inel Stn Rng,
Inel Stn Rng,
Life Results:
Initiation
5% Load Drop

10% Load Drop
50% Load Drop

(1/sec
(cyc/min
§sec

sec

Response:

Init (Mpa
! psi

Nf/2 (Mpa
" psi

Init (Mpa
" pS1

Nf/2 (Mpa
v (psi
Init

Nf/2

(cycles

Scyc1es
cycles

(cycles)

APPENDIX F
INCO 718 FATIGUE TESTING
INITIAL ISOTHERMAL TESTS

718-1
MERL 75

732
1350
0.00783
-1.00
2.60E-0
1.00
0.00
0.00

1143.
165849.
956.
138668.
-15
-2193.
9
1414

0.00023
0.00157

. .
QOO RO W

0
7
4
0
0
0

1
1
7

1339.
2792,
2851,
2939.

718-2
MERL 75

732.
1350.
0.006460
-0.988
2.20E-04
1.000
0.000
0.000

4719.
6181.
6311.
6506.

718-3
MERL 75

649.
1200.
0.007950
-0.994
2.60E-04
1.000
0.000
0.000

1240.
179896.
1102.
159862.
-15
-2187.
-0.
-117.
0.000132
0.001163

OO =ONO &

2122.
2725.
2782.
2868.

122

718-4
MERL 75

649.
1200.
0.0064€0
-0.991
2.20E-04
1.000
0.000
0.000

1039.5
150766.0
991.4
143786.0
-5.7
-829.3
14.3
2079.3
0.000121
0.000354

11066.
13180.
13224.
13332.
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